视觉残差函数及雅可比公式推导

【约定符号】:
特征点在相机坐标系下的坐标为 [ x , y , z ] T [x,y,z]^T [x,y,z]T
特征点在归一化相机坐标系下的坐标为 [ μ , ν , 1 ] T [\mu,\nu,1]^T [μ,ν,1]T [ μ , ν ] T [\mu,\nu]^T [μ,ν]T
特征点的这两种坐标之间的关系:
[ x y z ] = 1 λ [ μ ν 1 ] \begin{bmatrix} x\\ y\\ z \end{bmatrix}= \frac{1}{\lambda} \begin{bmatrix} \mu\\ \nu\\ 1 \end{bmatrix} xyz=λ1μν1
其中, λ = 1 / z \lambda=1/z λ=1/z,称为逆深度

【定义概念】视觉重投影误差
假设预测的(估计的) 特征点的坐标为 [ x , y , z ] T [x,y,z]^T [x,y,z]T(相机坐标系),观测到的 特征点的坐标为 [ μ , ν ] T [\mu,\nu]^T [μ,ν]T(归一化相机坐标系),则视觉重投影误差定义为:
r c = [ x z − μ y z − ν ] r_c=\begin{bmatrix} \frac{x}{z}-\mu\\ \frac{y}{z}-\nu \end{bmatrix} rc=[zxμzyν]
基于以上内容,开始推导。


已知第 i i i帧中某特征点的坐标 [ μ i , ν i ] T [\mu_i,\nu_i]^T [μi,νi]T(归一化相机坐标系)及逆深度 λ i \lambda_i λi,可以预测该特征点在第 j j j帧的相机坐标系下的坐标 [ x c j , y c j , z c j ] T [x_{c_j},y_{c_j},z_{c_j}]^T [xcj,ycj,zcj]T为:
(1-1) [ x c j y c j z c j 1 ] = T b c − 1 T w b j − 1 T w b i T b c [ 1 λ c i μ 1 λ c i ν 1 λ c i 1 ] \begin{bmatrix} x_{c_j}\\ y_{c_j}\\ z_{c_j}\\1 \end{bmatrix}= T^{-1}_{bc}T^{-1}_{wb_j} T_{wb_i}T_{bc} \begin{bmatrix} \frac{1}{\lambda_{c_i}}\mu\\ \frac{1}{\lambda_{c_i}}\nu\\ \frac{1}{\lambda_{c_i}} \\1 \end{bmatrix} \tag{1-1} xcjycjzcj1=Tbc1Twbj1TwbiTbcλci1μλci1νλci11(1-1)
【注】关于 T w b i T_{wb_i} Twbi T w b j T_{wb_j} Twbj,此时我们有一个粗略的值。
同时,该特征点在第 j j j帧确实被观测到了,坐标为 [ μ c j , ν c j ] T [\mu_{c_j},\nu_{c_j}]^T [μcj,νcj]T,则不难构建重投影误差(抄过来)如下:
r c = [ x c j z c j − μ c j y c j z c j − ν c j ] ≜ [ r c 1 r c 2 ] r_c=\begin{bmatrix} \frac{x_{c_j}}{z_{c_j}}-\mu_{c_j}\\ \frac{y_{c_j}}{z_{c_j}}-\nu_{c_j} \end{bmatrix}\triangleq \begin{bmatrix} r_{c1}\\ r_{c2} \end{bmatrix} rc=zcjxcjμcjzcjycjνcj[rc1rc2]
这就是残差函数
残差函数构成损失函数,在使用LM算法优化过程中,需要使用残差函数的Jacobian矩阵(一阶泰勒展开) ∂ r c ∂ s t a t e = ∂ r c ∂ f c j ⋅ ∂ f c j ∂ s t a t e \frac{\partial r_c}{\partial state}=\frac{\partial r_c}{\partial f_{c_j}}\cdot \frac{\partial f_{c_j}}{\partial state} staterc=fcjrcstatefcj。【具体详见LM算法】


求残差函数的Jacobian矩阵
首先,明确 r c r_c rc需要对哪些变量求偏导。
共四大部分:1. i i i时刻的位移和姿态,2. j j j时刻的位移和姿态,3. imu和相机的外参,4. 逆深度。

应用链式法则, ∂ r c ∂ s t a t e = ∂ r c ∂ f c j ⋅ ∂ f c j ∂ s t a t e \frac{\partial r_c}{\partial state}=\frac{\partial r_c}{\partial f_{c_j}}\cdot \frac{\partial f_{c_j}}{\partial state} staterc=fcjrcstatefcj

第一步,先求 ∂ r c ∂ f c j \frac{\partial r_c}{\partial f_{c_j}} fcjrc得:
∂ r c ∂ f c j = [ ∂ r c 1 ∂ x c j ∂ r c 1 ∂ y c j ∂ r c 1 ∂ z c j ∂ r c 2 ∂ x c j ∂ r c 2 ∂ y c j ∂ r c 2 ∂ z c j ] = [ 1 z c j 0 − x c j z c j 2 0 1 z c j − y c j z c j 2 ] \begin{aligned} \frac{\partial r_c}{\partial f_{c_j}} &= \begin{bmatrix} \frac{\partial r_{c1}}{\partial x_{c_j}} & \frac{\partial r_{c1}}{\partial y_{c_j}} & \frac{\partial r_{c1}}{\partial z_{c_j}} \\ \frac{\partial r_{c2}}{\partial x_{c_j}} & \frac{\partial r_{c2}}{\partial y_{c_j}} & \frac{\partial r_{c2}}{\partial z_{c_j}} \end{bmatrix} \\ &= \begin{bmatrix} \frac{1}{z_{c_j}} & 0 & -\frac{x_{c_j}}{ z^2_{c_j}} \\ 0 & \frac{1}{z_{c_j}} & -\frac{y_{c_j}}{ z^2_{c_j}} \end{bmatrix} \\ \end{aligned} fcjrc=[xcjrc1xcjrc2ycjrc1ycjrc2zcjrc1zcjrc2]=zcj100zcj1zcj2xcjzcj2ycj

第二步:求 ∂ f c j ∂ s t a t e \frac{\partial f_{c_j}}{\partial state} statefcj


在开始第二部分的求导之前,对 f c j f_{c_j} fcj做一些等价变形。
公式(1-1)的等价形式:公式(1-2) 将四维齐次形式改写,拆成三维形式,并做一些符号简化:
(1-2) f c j ≜ [ x c j y c j z c j ] = R b c T R w b j T R w b i R b c 1 λ c i [ μ c j ν c i 1 ] + R b c T ( R w b j T ( ( R w b i p b c + p w b i ) − p w b j ) − p b c ) \begin{aligned} f_{c_j} &\triangleq \begin{bmatrix} x_{c_j}\\ y_{c_j}\\ z_{c_j} \end{bmatrix} \\ & = R^{T}_{bc}R^{T}_{wb_j} R_{wb_i}R_{bc}\frac{1}{\lambda_{c_i}} \begin{bmatrix} \mu_{c_j}\\ \nu_{c_i}\\ 1 \end{bmatrix}\\ &+R^{T}_{bc}(R^{T}_{wb_j}(( R_{wb_i}p_{bc}+p_{wb_i})-p_{wb_j})-p_{bc}) \end{aligned} \tag{1-2} fcjxcjycjzcj=RbcTRwbjTRwbiRbcλci1μcjνci1+RbcT(RwbjT((Rwbipbc+pwbi)pwbj)pbc)(1-2)

f b i ≜ R b c f c i + p b c f w ≜ R w b i f b i + p w b i f b j ≜ R w b j T ( f w − p w b j ) f c j ≜ R b c T ( f b j − p b c ) \begin{aligned} f_{b_i} &\triangleq R_{bc}f_{c_i}+p_{bc}\\ f_{w} &\triangleq R_{wb_i}f_{b_i}+p_{wb_i}\\ f_{b_j} &\triangleq R^T_{wb_j}(f_{w}-p_{wb_j})\\ f_{c_j} &\triangleq R^T_{bc}(f_{b_j}-p_{bc}) \end{aligned} fbifwfbjfcjRbcfci+pbcRwbifbi+pwbiRwbjT(fwpwbj)RbcT(fbjpbc)
不难看出,上面四个式子依次给出了特征点在 c i , b i , w , b j , c j c_i,b_i,w,b_j,c_j ci,bi,w,bj,cj坐标系下的坐标。将四个式子依次从上到下代入,展开即可得到公式(1-2)的结果。

问: p w c j p_{wc_j} pwcj f c j f_{c_j} fcj含义相同吗?
答:不相同, f c j f_{c_j} fcj表示特征点在 c j c_j cj相机坐标系下的坐标;
p w c j p_{wc_j} pwcj表示相机 c j c_j cj在世界坐标系下的坐标!


已知公式(1-2):
f c j = R b c T R w b j T R w b i R b c f c i + R b c T ( R w b j T ( ( R w b i p b c + p w b i ) − p w b j ) − p b c ) \begin{aligned} f_{c_j} & = R^{T}_{bc}R^{T}_{wb_j} R_{wb_i}R_{bc} f_{c_i} \\ &+R^{T}_{bc}(R^{T}_{wb_j}(( R_{wb_i}p_{bc}+p_{wb_i})-p_{wb_j})-p_{bc}) \end{aligned} fcj=RbcTRwbjTRwbiRbcfci+RbcT(RwbjT((Rwbipbc+pwbi)pwbj)pbc)
1.1 i i i时刻的位移:
p w b i : = p w b i + δ p b i b i ′ p_{wb_i}:=p_{wb_i}+\delta p_{b_ib'_i} pwbi:=pwbi+δpbibi,不难写出:
∂ f c j ∂ δ p b i b i ′ = R b c T R w b j T \frac{\partial f_{c_j}}{\partial \delta p_{b_ib'_i}}=R^{T}_{bc}R^{T}_{wb_j} δpbibifcj=RbcTRwbjT

1.2 i i i时刻的姿态:
R w b i : = R w b i ( I + [ δ θ b i b i ′ ] × ) R_{wb_i}:=R_{wb_i}(I+[\delta \theta_{b_ib'_i}]_\times) Rwbi:=Rwbi(I+[δθbibi]×)
f c j f_{c_j} fcj中与 R w b i R_{wb_i} Rwbi有关的项有两部分,可合成简化为:
f c j = R b c T R w b j T R w b i R b c f c i + R b c T R w b j T R w b i p b c + ( . . . ) = R b c T R w b j T R w b i f b i + ( . . . ) \begin{aligned} f_{c_j} & = R^{T}_{bc}R^{T}_{wb_j} R_{wb_i}R_{bc} f_{c_i} +R^{T}_{bc}R^{T}_{wb_j} R_{wb_i}p_{bc}+(...)\\ &= R^{T}_{bc}R^{T}_{wb_j} R_{wb_i}f_{b_i} +(...) \end{aligned} fcj=RbcTRwbjTRwbiRbcfci+RbcTRwbjTRwbipbc+(...)=RbcTRwbjTRwbifbi+(...)
则:
∂ f c j ∂ δ θ b i b i ′ = R b c T R w b j T R w b i ( I + [ δ θ b i b i ′ ] × ) f b i δ θ b i b i ′ = − R b c T R w b j T R w b i [ f b i ] × \begin{aligned} \frac{\partial f_{c_j}}{\partial \delta \theta_{b_ib'_i}} &=\frac{R^{T}_{bc}R^{T}_{wb_j} R_{wb_i}(I+[\delta \theta_{b_ib'_i}]_\times)f_{b_i} }{\delta \theta_{b_ib'_i}} \\ &=-R^{T}_{bc}R^{T}_{wb_j} R_{wb_i}[f_{b_i}]_\times \end{aligned} δθbibifcj=δθbibiRbcTRwbjTRwbi(I+[δθbibi]×)fbi=RbcTRwbjTRwbi[fbi]×
【注】这里有一个写法上的简化。

2.1 j j j时刻的位移:
p w b j : = p w b j + δ p b j b j ′ p_{wb_j}:=p_{wb_j}+\delta p_{b_jb'_j} pwbj:=pwbj+δpbjbj,不难写出:
∂ f c j ∂ δ p b j b j ′ = − R b c T R w b j T \frac{\partial f_{c_j}}{\partial \delta p_{b_jb'_j}}=-R^{T}_{bc}R^{T}_{wb_j} δpbjbjfcj=RbcTRwbjT

2.2 j j j时刻的姿态:
R w b j : = R w b j ( I + [ δ θ b j b j ′ ] × ) R_{wb_j}:=R_{wb_j}(I+[\delta \theta_{b_jb'_j}]_\times) Rwbj:=Rwbj(I+[δθbjbj]×)
f c j f_{c_j} fcj中与 R w b j R_{wb_j} Rwbj有关的项有两部分,可合成简化为:
f c j = R b c T R w b j T R w b i R b c f c i + R b c T ( R w b j T ( ( R w b i p b c + p w b i ) − p w b j ) − p b c ) = R b c T R w b j T ( R w b i ( R b c f c i + p b c ) + p w b i − p w b j ) + ( . . . ) = R b c T R w b j T ( f w − p w b j ) + ( . . . ) \begin{aligned} f_{c_j} & = R^{T}_{bc}R^{T}_{wb_j} R_{wb_i}R_{bc} f_{c_i} \\ &+R^{T}_{bc}(R^{T}_{wb_j}(( R_{wb_i}p_{bc}+p_{wb_i})-p_{wb_j})-p_{bc}) \\ &=R^{T}_{bc}R^{T}_{wb_j}(R_{wb_i}(R_{bc} f_{c_i}+p_{bc})+p_{wb_i}-p_{wb_j})+(...) \\ &=R^{T}_{bc}R^{T}_{wb_j}(f_w-p_{wb_j})+(...) \end{aligned} fcj=RbcTRwbjTRwbiRbcfci+RbcT(RwbjT((Rwbipbc+pwbi)pwbj)pbc)=RbcTRwbjT(Rwbi(Rbcfci+pbc)+pwbipwbj)+(...)=RbcTRwbjT(fwpwbj)+(...)
则:
∂ f c j ∂ δ θ b j b j ′ = R b c T [ R w b j ( I + [ δ θ b j b j ′ ] × ) ] T ( f w − p w b j ) δ θ b j b j ′ = R b c T ( I − [ δ θ b j b j ′ ] × ) R w b j T ( f w − p w b j ) δ θ b j b j ′ = R b c T ( I − [ δ θ b j b j ′ ] × ) f b j δ θ b j b j ′ = R b c T [ f b j ] × \begin{aligned} \frac{\partial f_{c_j}}{\partial \delta \theta_{b_jb'_j}} &=\frac{ R^{T}_{bc}[R_{wb_j}(I+[\delta \theta_{b_jb'_j}]_\times)]^T(f_w-p_{wb_j}) }{\delta \theta_{b_jb'_j}} \\ &=\frac{ R^{T}_{bc}(I-[\delta \theta_{b_jb'_j}]_\times)R_{wb_j}^T(f_w-p_{wb_j}) }{\delta \theta_{b_jb'_j}} \\ &=\frac{ R^{T}_{bc}(I-[\delta \theta_{b_jb'_j}]_\times)f_{b_j} }{\delta \theta_{b_jb'_j}} \\ &=R^{T}_{bc}[f_{b_j}]_\times \end{aligned} δθbjbjfcj=δθbjbjRbcT[Rwbj(I+[δθbjbj]×)]T(fwpwbj)=δθbjbjRbcT(I[δθbjbj]×)RwbjT(fwpwbj)=δθbjbjRbcT(I[δθbjbj]×)fbj=RbcT[fbj]×

3.1 imu和相机之间外参中的位移:
p b c : = p b c + δ p c c ′ p_{bc}:=p_{bc}+\delta p_{cc'} pbc:=pbc+δpcc,不难写出:
∂ f c j ∂ δ p c c ′ = R b c T ( R w b j T R w b j T − I 3 × 3 ) \frac{\partial f_{c_j}}{\partial \delta p_{cc'} } =R^{T}_{bc} (R^{T}_{wb_j} R^{T}_{wb_j}-I_{3\times 3}) δpccfcj=RbcT(RwbjTRwbjTI3×3)
3.2 imu和相机之间外参中的姿态:
R b c : = R b c ( I + [ δ θ c c ′ ] × ) R_{bc}:=R_{bc}(I+[\delta \theta_{cc'}]_\times) Rbc:=Rbc(I+[δθcc]×)
f c j f_{c_j} fcj中与 R c c ′ R_{cc'} Rcc有关的项有两部分,且不容易简化,故分为两部分求解:
第一部分:
f c j [ 1 ] ≜ R b c T R w b j T R w b i R b c f c i f^{[1]}_{c_j} \triangleq R^{T}_{bc}R^{T}_{wb_j} R_{wb_i}R_{bc} f_{c_i} fcj[1]RbcTRwbjTRwbiRbcfci
则:
∂ f c j [ 1 ] ∂ δ θ c c ′ = ( I − [ δ θ c c ′ ] × ) R b c T R w b j T R w b i R b c ( I + [ δ θ c c ′ ] × ) f c i δ θ c c ′ ≈ − [ δ θ c c ′ ] × R b c T R w b j T R w b i R b c f c i + R b c T R w b j T R w b i R b c [ δ θ c c ′ ] × f c i δ θ c c ′ = [ R b c T R w b j T R w b i R b c f c i ] × − R b c T R w b j T R w b i R b c [ f c i ] × \begin{aligned} \frac{\partial f^{[1]}_{c_j}}{\partial \delta \theta_{cc'}} &=\frac{ (I-[\delta \theta_{cc'}]_\times)R^{T}_{bc}R^{T}_{wb_j} R_{wb_i}R_{bc}(I+[\delta \theta_{cc'}]_\times) f_{c_i} }{\delta \theta_{cc'}} \\ &\approx \frac{ -[\delta \theta_{cc'}]_\times R^{T}_{bc}R^{T}_{wb_j} R_{wb_i}R_{bc} f_{c_i} + R^{T}_{bc}R^{T}_{wb_j} R_{wb_i}R_{bc} [\delta \theta_{cc'}]_\times f_{c_i}}{\delta \theta_{cc'}} \\ &=[R^{T}_{bc}R^{T}_{wb_j} R_{wb_i}R_{bc} f_{c_i}]_{\times}-R^{T}_{bc}R^{T}_{wb_j} R_{wb_i}R_{bc} [f_{c_i}]_{\times} \end{aligned} δθccfcj[1]=δθcc(I[δθcc]×)RbcTRwbjTRwbiRbc(I+[δθcc]×)fciδθcc[δθcc]×RbcTRwbjTRwbiRbcfci+RbcTRwbjTRwbiRbc[δθcc]×fci=[RbcTRwbjTRwbiRbcfci]×RbcTRwbjTRwbiRbc[fci]×
第二部分:
f c j [ 2 ] = R b c T ( R w b j T ( ( R w b i p b c + p w b i ) − p w b j ) − p b c ) f^{[2]}_{c_j} = R^{T}_{bc}(R^{T}_{wb_j}(( R_{wb_i}p_{bc}+p_{wb_i})-p_{wb_j})-p_{bc}) fcj[2]=RbcT(RwbjT((Rwbipbc+pwbi)pwbj)pbc)
则:
∂ f c j [ 2 ] ∂ δ θ c c ′ = ( I − [ δ θ c c ′ ] × ) R b c T ( R w b j T ( ( R w b i p b c + p w b i ) − p w b j ) − p b c ) δ θ c c ′ = [ R b c T ( R w b j T ( ( R w b i p b c + p w b i ) − p w b j ) − p b c ) ] × \begin{aligned} \frac{\partial f^{[2]}_{c_j}}{\partial \delta \theta_{cc'}} &=\frac{ (I-[\delta \theta_{cc'}]_\times)R^{T}_{bc}(R^{T}_{wb_j}(( R_{wb_i}p_{bc}+p_{wb_i})-p_{wb_j})-p_{bc})}{\delta \theta_{cc'}} \\ & = [R^{T}_{bc}(R^{T}_{wb_j}(( R_{wb_i}p_{bc}+p_{wb_i})-p_{wb_j})-p_{bc})]_{\times} \end{aligned} δθccfcj[2]=δθcc(I[δθcc]×)RbcT(RwbjT((Rwbipbc+pwbi)pwbj)pbc)=[RbcT(RwbjT((Rwbipbc+pwbi)pwbj)pbc)]×
两部分相加,即 ∂ f c j ∂ δ θ c c ′ = ∂ f c j [ 1 ] ∂ δ θ c c ′ + ∂ f c j [ 2 ] ∂ δ θ c c ′ \frac{\partial f_{c_j}}{\partial \delta \theta_{cc'}}=\frac{\partial f^{[1]}_{c_j}}{\partial \delta \theta_{cc'}}+\frac{\partial f^{[2]}_{c_j}}{\partial \delta \theta_{cc'}} δθccfcj=δθccfcj[1]+δθccfcj[2]

4.逆深度:
λ c i : = λ c i + δ λ c i \lambda_{c_i}:=\lambda_{c_i}+\delta \lambda_{c_i} λci:=λci+δλci f c j f_{c_j} fcj中仅 f c i f_{c_i} fci λ c i \lambda_{c_i} λci有关,链式法则 ∂ f c j ∂ δ λ c i = ∂ f c j ∂ δ f c i ⋅ ∂ f c i ∂ δ λ c i \frac{\partial f_{c_j}}{\partial \delta \lambda_{c_i}}=\frac{\partial f_{c_j}}{\partial \delta f_{c_i}}\cdot \frac{\partial f_{c_i}}{\partial \delta \lambda_{c_i}} δλcifcj=δfcifcjδλcifci
其中,
f c j = R b c T R w b j T R w b i R b c f c i f_{c_j} = R^{T}_{bc}R^{T}_{wb_j} R_{wb_i}R_{bc} f_{c_i} fcj=RbcTRwbjTRwbiRbcfci
则:
∂ f c j ∂ δ f c i = R b c T R w b j T R w b i R b c \frac{\partial f_{c_j}}{\partial \delta f_{c_i}} =R^{T}_{bc}R^{T}_{wb_j} R_{wb_i}R_{bc} δfcifcj=RbcTRwbjTRwbiRbc
又有,
f c i = 1 λ c i [ μ c j ν c i 1 ] f_{c_i}=\frac{1}{\lambda_{c_i}} \begin{bmatrix} \mu_{c_j}\\ \nu_{c_i}\\ 1 \end{bmatrix}\\ fci=λci1μcjνci1
则:
∂ f c i ∂ δ λ c i = − 1 λ c i 2 [ μ c j ν c i 1 ] = − 1 λ c i f c i \frac{\partial f_{c_i}}{\partial \delta \lambda_{c_i}} =-\frac{1}{\lambda^2_{c_i}} \begin{bmatrix} \mu_{c_j}\\ \nu_{c_i}\\ 1 \end{bmatrix}= -\frac{1}{\lambda_{c_i}} f_{c_i} δλcifci=λci21μcjνci1=λci1fci
至此,推导完成!


  • 4
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
残差网络(Residual Network,简称ResNet)是一种深度神经网络架构,通过使用跨层的残差连接(Residual Connection)来解决深度神经网络中的梯度消失和梯度爆炸等问题,从而使得神经网络可以更加深层次地进行训练。 在传统的神经网络中,每层网络都会将输入映射到一个新的特征空间中,即: $$\mathbf{y} = f(\mathbf{x};\mathbf{\theta})$$ 其中,$\mathbf{x}$ 为输入特征,$\mathbf{y}$ 为输出特征,$f$ 为网络函数,$\mathbf{\theta}$ 为网络参数。 而在残差网络中,每个残差块(Residual Block)都由两个卷积层和一个残差连接组成,其中残差连接的作用是将原始输入特征 $\mathbf{x}$ 直接添加到输出特征 $\mathbf{y}$ 中,即: $$\mathbf{y} = f(\mathbf{x};\mathbf{\theta}) + \mathbf{x}$$ 这里的 $f$ 可以是任意的神经网络结构,包括卷积神经网络、全连接神经网络等。通过使用残差连接,可以使得网络可以更加轻松地学习到原始输入特征的信息,从而避免了在深层网络中出现的梯度消失和梯度爆炸问题。 具体来说,每个ResNet残差块包含以下几个部分: 1. 输入特征 $\mathbf{x}$ 经过一个卷积层和一个批归一化层后得到 $\mathbf{z}_1$。 2. $\mathbf{z}_1$ 经过另一个卷积层和批归一化层后得到 $\mathbf{z}_2$。 3. 将 $\mathbf{z}_2$ 与输入特征 $\mathbf{x}$ 相加,得到输出特征 $\mathbf{y} = \mathbf{z}_2 + \mathbf{x}$。 4. 最后,输出特征 $\mathbf{y}$ 经过一个非线性激活函数(如ReLU)后输出。 ResNet中的残差连接可以用数学公式来表示如下: $$\mathbf{y} = f(\mathbf{x};\mathbf{\theta}) + \mathbf{x}$$ 其中,$f$ 表示残差块中的卷积神经网络,$\mathbf{x}$ 表示输入特征,$\mathbf{y}$ 表示输出特征。通过使用残差连接,可以使得网络的深度增加,而不会导致梯度消失或梯度爆炸问题。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值