https://blog.csdn.net/bigFatCat_Tom/article/details/91619977
https://pytorch-cn.readthedocs.io/zh/latest/package_references/torch-nn/#normalization-layers-source
https://blog.csdn.net/t20134297/article/details/104960101
基本原理
对小批量(mini-batch)3d数据组成的4d[batch_size,num_features,height,width]输入进行批标准化(Batch Normalization)操作
在卷积神经网络的卷积层之后总会添加BatchNorm2d进行数据的归一化处理,这使得数据在进行Relu之前不会因为数据过大而导致网络性能的不稳定,BatchNorm2d()函数数学原理如下:
在每一个小批量(mini-batch)数据中,计算输入各个维度的均值和标准差。gamma与beta是可学习的大小为C的参数向量(C为输入大小)
也就是说:BN层中含有统计数据数值,即均值和方差
在训练时,该层计算每次输入的均值与方差,并进行移动平均。移动平均默认的动量值为0.1。
在验证时,训练求得的均值/方差将用于标准化验证数据。
在训练过程中model.train(),train过程的BN的统计数值—均值和方差是通过当前batch数据估计的。
并且测试时,model.eval()后,若track_running_stats=True,模型此刻所使用的统计数据是Running status 中的,即通过指数衰减规则,积累到当前的数值。否则依然使用基于当前batch数据的估计值。
BN层的统计数据更新是在每一次训练阶段model.train()后的forward()方法中自动实现的,而不是在梯度计算与反向传播中更新optim.step()中完成
从上面的分析可以看出来,正确的冻结BN的方式是在模型训练时,把BN单独挑出来,重新设置其状态为eval (在model.train()之后覆盖training状态)
在训练过程中 nn.BatchNorm2d() 的作用是根据统计的mean 和var来对数据进行标准化,并且这个mena和var在每个batch中都会进行,为了使得数据更有统计意义,使得整个训练数据的特征都能够被保存,则在每个batch过程中,都会对网络的mean和var进行更新,这里就涉及到新的 batch的统计数据mean和var与网络已经保存的这两个统计数据之间的取舍问题了,而这个0.8就指定了保存的比例,这个参数名为momentum.
class torch.nn.BatchNorm2d(num_features, eps=1e-05, momentum=0.1, affine=True)
BatchNorm2d()内部的参数如下:
1.num_features:一般输入参数为batch_sizenum_featuresheight*width,即为其中特征的数量
2.eps:分母中添加的一个值, 为保证数值稳定性(分母不能趋近或取0),给分母加上的值。默认为1e-5。
3.momentum:一个用于运行过程中均值和方差的一个移动平均默认的动量值参数(我的理解是一个稳定系数,类似于SGD中的momentum的系数)
4.affine:一个布尔值,当设为true,给该层添加可学习的仿射变换参数。会给定可以学习的系数矩阵gamma和beta 。(不可学习默认是常数1和0).
Shape: - 输入:(N, C,H, W) - 输出:(N, C, H, W)(输入输出相同)
上面的讲解还不够形象,我们具体通过如下的代码进行讲解:
#encoding:utf-8
import torch
import torch.nn as nn
#num_features - num_features from an expected input of size:batch_size*num_features*height*width
#eps:default:1e-5 (公式中为数值稳定性加到分母上的值)
#momentum:动量参数,用于running_mean and running_var计算的值,default:0.1
m=nn.BatchNorm2d(2,affine=True) #affine参数设为True表示weight和bias将被使用
input=torch.randn(1,2,3,4)
output=m(input)
print(input)
print(m.weight)
print(m.bias)
print(output)
print(output.size())
输出
tensor([[[[ 1.4174, -1.9512, -0.4910, -0.5675],
[ 1.2095, 1.0312, 0.8652, -0.1177],
[-0.5964, 0.5000, -1.4704, 2.3610]],
[[-0.8312, -0.8122, -0.3876, 0.1245],
[ 0.5627, -0.1876, -1.6413, -1.8722],
[-0.0636, 0.7284, 2.1816, 0.4933]]]])
Parameter containing:
tensor([0.2837, 0.1493], requires_grad=True)
Parameter containing:
tensor([0., 0.], requires_grad=True)
tensor([[[[ 0.2892, -0.4996, -0.1577, -0.1756],
[ 0.2405, 0.1987, 0.1599, -0.0703],
[-0.1824, 0.0743, -0.3871, 0.5101]],
[[-0.0975, -0.0948, -0.0347, 0.0377],
[ 0.0997, -0.0064, -0.2121, -0.2448],
[ 0.0111, 0.1232, 0.3287, 0.0899]]]],
grad_fn=<NativeBatchNormBackward>)
torch.Size([1, 2, 3, 4])
分析:输入是一个1234 四维矩阵,gamma和beta为一维数组,是针对input[0][0],input[0][1]两个34的二维矩阵分别进行处理的,我们不妨将input[0][0]的按照上面介绍的基本公式来运算,看是否能对的上output[0][0]中的数据。首先我们将input[0][0]中的数据输出,并计算其中的均值和方差。
print("输入的第一个维度:")
print(input[0][0]) #这个数据是第一个3*4的二维数据
#求第一个维度的均值和方差
firstDimenMean=torch.Tensor.mean(input[0][0])
firstDimenVar=torch.Tensor.var(input[0][0],False) #false表示贝塞尔校正不会被使用
print(m)
print('m.eps=',m.eps)
print(firstDimenMean)
print(firstDimenVar)
输出结果如下:
输入的第一个维度:
tensor([[ 1.4174, -1.9512, -0.4910, -0.5675],
[ 1.2095, 1.0312, 0.8652, -0.1177],
[-0.5964, 0.5000, -1.4704, 2.3610]])
BatchNorm2d(2, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
m.eps= 1e-05
tensor(0.1825)
tensor(1.4675)
我们可以通过计算器计算出均值和方差均正确计算。最后通过公式计算input[0][0][0][0]的值,代码如下:
batchnormone=((input[0][0][0][0]-firstDimenMean)/(torch.pow(firstDimenVar,0.5)+m.eps))\
*m.weight[0]+m.bias[0]
print(batchnormone)
输出结果如下:
tensor(0.2892, grad_fn=<AddBackward0>)
结果值等于output[0][0][0][0]。ok,代码和公式完美的对应起来了。
ps:上面计算方差时有一个贝塞尔校正系数,具体可以通过如下链接参考:https://www.jianshu.com/p/8dbb2535407e
从公式上理解即在计算方差时一般的计算方式如下:
通过贝塞尔校正的样本方差如下:
目的是在总体中选取样本时能够防止边缘数据不被选到。