【图像处理】植物叶识别和分类

这篇博客介绍了如何使用图像处理和机器学习技术对植物叶子进行识别和分类。团队通过二值化、闭合形态操作提取特征,并利用区域属性计算如惯性张量、短轴长度等指标。实验中,他们发现梯度提升分类器在识别准确率上表现出色,达到约87%的测试准确率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、说明

        这是国外某个学生团队尝试用机器学习方法对植物叶进行识别分类的实验。实验给出若干张植物叶图片,针对这些图片,对特征进行测量、提取、重组,最后用机器学习方法实现;该具备一定的参考价值。

        现在是我们将图像处理学习应用于实际机器学习问题的时候了。对于这个博客,让我们解决一个涉及叶子的简单分类问题。作为小组作业,我们的团队得到了一个目录,其中包含来自各种植物的叶子图像。这些图像如下所示:

可以看出,在目录中可以找到 5 类叶子。因此,我们留下了这个机器学习问题:

我们可以使用传统的监督机器学习方法区分各种类别的叶子吗?
阅读直到本文末尾以找出答案。

二、特征提取

2.1 图像处理

        您可能会问的第一个问题&#

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无水先生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值