目录
一、说明
随计算机图像、图形学的深入开展。关于几何方面的理论越来越受到重视,其中包括:射影几何、共形几何、微分几何等观点。本篇将系列开展射影几何的概念,以及实时的程序实验。为读者快速打开理论实践结合的大门,保障理论水平的提高。
二、拓广直线
对于平面上的一条直线来说,如果将正反方向无穷远,并认为无穷远点只有一个,于是无穷远的可以合并,就产生一个类似环状的拓广直线。

- 拓广直线上一点不能把拓广直线分成不连通的两段;而拓广直线上的两普通点把它分成两段,其中一段包含无穷远点,另一段就是原来直线上的线段.
拓广直线的启发来源于地球经线总是相交于两级,因此,在陆地上作的平行经线,总是要相交于北极:
无穷远直线。继续看:
- L1平行于L2,在无穷远点S1上相汇。 L3平行于L4,在无穷远点S2上相汇。
- L1,L2相交于L3,L4,因而无穷远处的S1和S2也不是同一个点,S1和S2构成无穷远直线。
- 由于L1和L3相交,相交的线能构成平面,因此,无穷多的S1,S2,...S∞构成无穷远封闭盘。包围这个平面。
三、拓广平面
3.1 几个术语和概念
术语 | 意义 | 备注 |
---|---|---|
欧氏点 | 有限空间内点 | |
无穷远点 | 每条直线的无限远处的抽象点 | |
射影点 | 欧氏点 + 无穷远点 | |
欧氏直线 | 有限空间直线,不包含无穷远点 | |
射影直线 | 欧氏直线+无穷远点的总称。、还有,无穷远点的连线是 | |
欧氏平面 | 有限欧氏空间的平面。 | |
射影平面 | 欧氏平面+无限远射影线构成。 |
为了区分无穷和有限范围,有必要引入一些概念:
1)欧氏点:指的是有限空间内的点,注意,不能与欧氏坐标混淆,欧氏坐标是无限的,但是,能在这个坐标框架下表示的点为A(100,1000)而不能是A(∞,1000)
2)无限远点:注意这个概念,不是说某个点A(∞,1000)或B(∞,∞);以上A或B没有研究价值。正确的思路是,指极坐标上某一方向下的无穷远点,如下图:
3)射影点:射影点就是视点,就是观察客观事物的视线发出的起点;注意,这个点可以是欧氏点也可以是无穷远点;从欧氏点发出的射影是透视射影;从无穷远点发出的射影是仿射射影(保平行射影)。
4)欧氏直线:在欧氏空间定义的直线,其特点是有限范围的直线,虽然说“直线可以延长到无限”,但从不研究无穷远点的情况。
5)射影直线:射影直线包括欧氏直线和无穷远点连成的直线,注意,无穷远点连成直线如下图:
假如ABC都是无穷远点,无穷远点AB~连接直线线不是AB连成的直径(AB直径实际上是欧氏直线),而是AB在无穷远圆弧上,经AB过无穷远C点的连结弧,将圆无限扩大的结果,很抽象。
6)欧氏平面:是在欧氏空间的有限平面;
7)射影平面:要么是欧氏平面,要么是欧氏平面+无限远射影线构成。解释如下图:
当球直径无限扩大后,球上每一格看成是欧氏平面,无限延长后,该平面在无限远是连接的。
3.2 关于拓广平面
拓广平面就是射影平面。
凡是两个平行的拓展平面都在无穷远处相交,相交于无穷远封闭线。单个拓广平面总时存在。

图 2 设有平面Ps和Pr平行,则Ps和Pr在无限远处相交,相交的集合是一个无限大半径的园(按照极限论,无限大半径的园,就是直线)。所以,图中和
代表无限远圆上的一个点。故:
- 定理1.1.1 拓广平面上任意两点决定一条直线
是这样的事实:
- 平面上普通两点连成直线。
- 平面上任意一个点,与无穷远点连成直线。
- 两个无穷远点连成直线。
这里提醒的是,“两个无穷远点连成直线” 不是图1中图中和
连成直线,事实上,图中
和
是一个点。“一组平行线在无穷远处交于一个点”,这点务必注意。
上面说的“ 3)两个无穷远点连成直线” 指的情况如图2所示。

如图三,K1、K2、K3 构成平行线,它们将交于Cu和Cv(两点重合),而无穷远点(Cu和Cv)和无穷远点(du和dv)构成无穷远直线。
- (ⅰ)拓广平面上任意两条拓广直线如果作为普通直线平行,那么此两拓广直线上的无穷远点相同,否则不同;
- (ⅱ)拓广平面上所有的无穷远点构成一条直线,它上面没有普通点,这条直线称为无穷远直线.
3.3 拓广平面的实际意义
将图四中左边的棋盘格放于地面,然后绘制成拓广平面,如右侧。显然棋盘格上有两组互相垂直的平行线族;分别交于天际线的R点和S点,R和S是无限远的圆上,也就是说,RS这两个无限远点连成一条线。

右图中上边的目测起来似乎不是平面,而下边的目测更像是个平面。这是交比不对造成的。后期我们将论述另一个重要概念:交比。

四、结论
本篇我们引入重要的射影几何概念,告诉大家在射影几何中,空间域是如何定义的。注意这种定义是逻辑的,或抽象的,然而不是不合理的,学习者需要习惯。