图解变压器(Transformer)

本文深入探讨Transformer模型,一种利用注意力机制提高模型训练速度的架构。文章详细介绍了Transformer的组成部分,包括编码器、解码器、自注意力层和多头注意力,解释了它们如何协同工作以实现并行化处理,从而提升翻译任务的性能。此外,还讨论了位置编码、残差连接和训练过程中的损失函数等关键概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、说明


        观看:麻省理工学院的深度学习最先进讲座引用了这篇文章

        在上一篇文章中,我们研究了注意力——现代深度学习模型中普遍存在的方法。注意力是一个有助于提高神经机器翻译应用程序性能的概念。在这篇文章中,我们将研究Transformer——</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无水先生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值