太阳系的混沌与稳定

一、说明

   在过去的二十年里,人们已经认识到混沌动力学在太阳系中普遍存在。我们现在了解到,太阳系中小成员——小行星、彗星和行星际尘埃——的轨道是混沌的,并且在地质时间尺度上发生了巨大的变化。主要行星的轨道也是混乱的吗?答案并不简单,其中的微妙之处引发了新的问题。

二、天体方程的历史

   在 1600 年代初期,约翰内斯·开普勒 (Johannes Kepler) 通过研究行星的复杂观测运动来发现和制定行星运动定律,从而为现代天体力学奠定了基础。艾萨克·牛顿随后在他对运动基本定律和万有引力定律的数学描述中进一步简化了。因此,我们得出了一组简单的方程来确定行星的运动。每个行星上的力只是来自太阳和太阳系中所有其他行星的引力的总和。在向量表示法中,这表示为:

m i d 2 r i d t 2 = G m i   ∑ j ≠ i   m j r j − r i ∣ r j − r i ∣ 3 , \begin{equation*}m_{i}\hspace{.167em}\frac{d^{2}\boldsymbol{{\mathrm{r}}}_{\boldsymbol{{\mathrm{i}}}}}{dt^{2}}=Gm_{i}\hspace{.167em}{ \,\substack{ \\ {\sum} \\ _{j{\mathrm{{\not=}i}}} }\, }\hspace{.167em}m_{j}\hspace{.167em}\frac{\boldsymbol{{\mathrm{r}}}_{\boldsymbol{{\mathrm{j}}}}-\boldsymbol{{\mathrm{r}}}_{\boldsymbol{{\mathrm{i}}}}}{{\vert}\boldsymbol{{\mathrm{r}}}_{\boldsymbol{{\mathrm{j}}}}-\boldsymbol{{\mathrm{r}}}_{\boldsymbol{{\mathrm{i}}}}{\vert}^{3}},\end{equation*} midt2d2ri=Gmij=imjrjri3rjri,

   其中 G 是万有引力的普遍常数,m 值是质量,r 值是它们在空间中的位置。
   对于两个体系统(太阳和一个伴星),有一个简单而优雅的解决方案:圆锥截面(圆或椭圆,抛物线或双曲线)。然而,第三个天体(或者在太阳系、太阳、九大行星和无数小天体的情况下)的存在不允许这些简单的方程得到简单的解!
   牛顿本人在月球运动问题上苦苦挣扎,但没有成功。过去,这项业务中使用的主要数学工具是微扰理论,它从“未扰动”轨道(围绕太阳的椭圆)开始,逐步努力有序地计算扰动的影响。最令人不安的是,这种计划在任意长时间内“有效”的证据仍然难以捉摸。这些扰动是否只在目前近乎圆形、近乎共面的行星轨道上引起微小的变化,或者它们可能在太阳系的伟大年龄中加起来如此之大,以至于轨道(在过去或将来)发生了巨大变化?

三、太阳系的扰动

   有明显的求知欲。历史上的行星配置是什么?未来会是什么样子?
   关于看似简单的常微分方程的解的质量,存在数学动机。
   还有一些实际的动机——与我们星球的宜居性有关的问题。地球的气候历史受到其轨道变化、小行星和彗星撞击的影响,也可能受到小行星和彗星产生的行星际尘埃颗粒积累的影响。因此,太阳系中行星和小天体的长期轨道动力学也具有很大的时间相关性。
   我们还问,我们在银河系中的行星系统有多典型?一个稳定的行星系统或一个拥有宜居行星的行星系统有什么特征?
   在过去的二十年中,数字计算机速度的显着进步,新数值技术的发展,以及现代非线性动力学技术和混沌理论在经典天体力学问题中的应用,导致了我们太阳系中许多动力学混沌的例子的发现和探索。在科学用法中,混沌不是无序的同义词,而是描述了确定性动力系统中可能发生的不规则行为,即由不受外部随机影响的常微分方程描述的系统。混沌系统有两个决定性的特征:它们表现出散布着随机性的秩序,并且它们的演化对初始条件极为敏感。对初始条件的极端敏感性通过附近轨道的指数发散来量化。这种发散的速率以称为李雅普诺夫时间的电子折叠时间尺度为特征。第二个特征时间尺度是逃逸时间,即轨道发生重大变化的时间。
   太阳系中的混沌与引力共振有关。引力共振的最简单情况发生在两颗行星的轨道周期为两个小整数的比值时,例如 1:2、3:5 等。当人们考虑行星轨道的进动周期以及它们的轨道周期时,还有其他更微妙的引力共振。强共振和弱共振将太阳系的整个相空间编织成一个复杂的网络。重叠共振,即近距离的多个引力共振,为太阳系中的混沌提供了途径。引力共振可能会影响非常大的轨道变化,或者只影响适度的轨道变化(在某些情况下,甚至可以防止大的扰动),这取决于敏感的初始条件。行星系统的长期动力学是引力共振的动力学。
   在过去的二十年里,我们已经了解到,太阳系的许多小成员(小行星、彗星、尘埃粒子)的轨道,受到主要行星的联合引力扰动,在百万年的时间尺度上是混乱和不稳定的。因此,已经确定了一种动态传输机制,用于在太阳系中将小天体运送到很远的距离。这种机制导致我们对彗星和陨石起源的理解有了很大的修改。
   例如,马特·霍尔曼(Matt Holman)描述了与木星的高阶轨道共振以及“三体共振”(涉及小行星与木星和土星的相互作用)的重叠,这是外小行星带混乱的原因。Murray 和 Holman (1) 发展了一种分析理论来估计这个问题中的李雅普诺夫时间和逃逸时间。
   最近通过几次数值模拟研究了行星轨道在千兆年时间尺度上的轨道演化。这些导致了一个最有趣的结论,即行星本身的轨道是混乱的。典型的李雅普诺夫时间是5-10百万年。一种新的分析理论(2)表明,木星行星之间的混沌是由木星、土星和天王星之间的微妙相互作用(也是三体共振)造成的。该理论还证实了与这种混沌相关的李雅普诺夫时间的数值估计,并表明天王星的逃逸时间很长(1018年),比我们太阳的寿命长得多。

四、太阳系的稳定性

   尽管数值模拟都表明行星轨道存在混沌,但从定性意义上讲,行星轨道在太阳的一生中是稳定的,因为行星保持在它们现在的轨道附近。然而,混沌的存在意味着在很长一段时间内预测行星位置的准确性是有限的。在所有行星中,水星的轨道似乎在轨道偏心率和倾角方面表现出最大的变化。幸运的是,由于水星的质量很小,这对整个行星系统的全球稳定来说并不是致命的。地球轨道的变化也可能通过太阳日照变化对其表面气候系统产生潜在的巨大影响,但发现也很小。
   Takashi Ito讨论了可能负责我们太阳系长期稳定的几个特性。其中,类地行星和木星行星子系统在动力分离上的差异似乎非常有趣和重要。类地行星的质量更小,轨道周期更短,动力分离更宽。它们受到木星行星的强烈扰动,木星行星的质量更大,轨道周期更长,动力分离更窄。作为一个子系统,木星行星不受任何其他大质量天体的干扰。
   Ito 和 Tanikawa (3) 进行了一系列数值实验,以了解类地行星和木星行星之间的这些差异如何影响它们的长期稳定性。他们考虑了具有相等动力学分离的各种类地行星子系统,并确定了它们在大质量木星行星扰动下的典型不稳定性时间尺度。他们发现,具有较小动态距离(<18RH)可能会在短时间内变得不稳定(<107年)。这种快速的不稳定性是由来自大质量木星行星的强烈引力扰动引起的。因此,目前类地行星之间的广泛动力分离(>26RH)可能是在千兆年时间跨度内维持行星轨道稳定性的重要条件之一。

五、结论

   这些最近的进展是梳理我们太阳系(及其子系统)的关键特性的开始,这些特性赋予了它一种奇怪的特征,即在与当前年龄相当的时间跨度上只是略微混乱或略微稳定。这只是探索的一部分,以了解是什么形成过程(也许还有初始条件)导致了自然界中这个非凡的系统,以及这些系统在我们的银河系和宇宙中有多普遍。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无水先生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值