一、说明
在时间序列预测领域,对更准确、更高效的模型的追求始终存在。深度学习的应用为该领域的重大进步铺平了道路,其中,长短期记忆 (LSTM) 网络与注意力机制的集成尤其具有革命性。本文深入探讨了一个实际案例研究:使用这种复杂的架构预测 Apple Inc. (AAPL) 的股价。
重要的是要承认这些想法的起源:韦恩·格雷。Wayne 是一名金融分析师,在人工智能方面拥有专业知识。在不透露太多的情况下,韦恩很棒,他的想法更上一层楼。这篇文章试图解释我们的对话,只是他研究的开始!
二、LSTM 和注意力机制简介
LSTM 网络是一种特殊的递归神经网络 (RNN),能够学习数据序列中的长期依赖关系。它们被广泛用于顺序数据,并且是时间序列分析中许多预测建模成功的基石。注意力机制最初是为自然语言处理任务开发的,它通过允许模型在进行预测时专注于输入序列的特定部分来增强 LSTM,类似于人类注意力的工作方式。