stable-diffusion 生成同一人物不同动作的尝试(多姿势图

文章介绍了如何利用稳定扩散模型(stable-diffusion)生成游戏角色的多种动作,以提高2D美术的制作效率。通过3D软件获取基础姿态,转换成骨骼图后,使用预训练模型进行图像生成,从而创建行走图和其他面向的角色动画。这种方法相比于传统方式能减少逐帧绘制的工作量,尽管目前的效果仍有提升空间,但已显示出巨大的潜力。

原文:stable-diffusion 生成同一人物不同动作的尝试(多姿势图) - 知乎

目录

因为开发游戏常遇到缺乏美术资源的情形,因此一直在研究的一个课题是如何用AI去生成一个游戏角色的多种动作,此前也使用过对抗模型等方式做过尝试,不过效果还不能实用,以下是一些以前的研究连接。

罗培羽:自动做游戏(7),一张原画生成任意动作19 赞同 · 4 评论文章正在上传…重新上传取消

罗培羽:自动做游戏(2),自动生成人物行走图59 赞同 · 17 评论文章正在上传…重新上传取消

罗培羽:AI做游戏,扩散模型生成角色行走图76 赞同 · 18 评论文章正在上传…重新上传取消

如今扩散模型在绘图方面取得较好成果,那么能否使用预训练模型的能力,来实现同一角色的不同动作。这个研究有着比较重要的落地意义,因为一旦成功,便能够加快游戏开发2D美术的效率,减少一帧一帧去画角色行走帧动画的工作量。

效果展示

如下是使用扩散模型生成的行走图,大致还原了人物动作,虽然一些细节还不太好,但整体已经能得到较高的分辨率。也由于该实验是针对人物的动作,并没有很细致的设置prompt以及挑选生成图,若仔细调整,生成效果还会更好。

将生成的角色切出来,并作为行走图放到游戏当中,得到如下的效果。虽然动作还不是很自然,但整体已经达到一定的效果,至少比几年前的实验效果好的多。

以下展示另外一些生成的角色。这些图片分为两行三列,每一行代表角色的正面、侧面和背面、也每一列则代表同一个行走动作中的两帧动画,一帧代表迈开左脚、另一帧代表迈开右脚。

除了生成行走图,该方法也可以用于生成人物的不同角度,以下是一些生成出来的图,每一张图共有8个面向,分别代表角色旋转0°、45°、90°……时的姿态。

实现方法

首先是获取基础姿态,通过3D软件导入基础模型,并截出所需的动作图像,如下图是构成行走图的六个姿态。

转换为骨骼

拼接组合

然后生成图片即可,而要作为动作图放到游戏,还需要做些抠图处理。

不同面向的角色生成也类似,构建骨骼图。

得到一张拼接图

然后用于生成

下一计划

目前仅仅是一些使用技巧,然而我也从Controlnet和Lora的实现方法中得到一些灵感,能否结合预训练模型、再加上自己的一些微调,使得模型具备拟合正面图像的生成能力呢,有空继续尝试。

PS:如果你想从事游戏开发,就不得不提到《百万在线:大型游戏服务端开发》这本书,它是一本很实用的游戏服务端书籍,看完基本就能达到一定的开发水平,甚至比那些工作了几年的人还要更强。

要使用 Stable Diffusion 生成人物“对眼”像,可以通过对提示词(Prompt)的精准设计来实现。提示词是影响生成像风格和内容的关键因素。以下是一些实用的方法和建议: ### 提示词设计 - **基础描述**:在提示词中加入“cross-eyed”或“crossed eyes”,这是英文中表示“对眼”的常用词汇。 - **人物描述**:可以加入对人物面部特征的详细描述,例如“young female”,“Asian face”,“smiling”等,以帮助模型更好地理解目标像的风格。 - **表情与细节**:添加表情描述,如“playful expression”或“funny look”,以增强人物的表情特征,使“对眼”效果更加自然[^2]。 ### 示例 Prompt ```plaintext cross-eyed young woman, playful expression, Asian face, detailed facial features, high resolution ``` ### 参数调整 - 在使用 Stable Diffusion 的过程中,可以尝试调整模型的参数,例如 CFG Scale(Classifier-Free Guidance Scale)来增强提示词的效果。通常,较高的 CFG Scale 值(如 7-10)会让生成像更贴近提示词描述[^1]。 - 使用负向提示词(Negative Prompt)来排除不希望出现的特征,例如输入“blurry, low resolution, unnatural eyes”来避免生成模糊或不自然的眼睛。 ### 插件与扩展 - 如果你使用的是 SDWebUI(Stable Diffusion WebUI),可以尝试安装插件来增强生成效果。例如,使用 ControlNet 插件来控制人物面部的细节,或者使用 AnimateDiff 来生成动态的“对眼”效果[^3]。 ### 实践建议 - **尝试**:由于 Stable Diffusion 是基于概率模型生成像,因此可能需要次运行并调整提示词和参数,才能得到最满意的结果。 - **参考像**:如果你有特定的像风格或细节要求,可以使用像到像(img2img)模式,并结合参考像来指导生成过程[^5]。 通过上述方法,可以利用 Stable Diffusion 生成具有“对眼”特征的人物像,并根据需要进行细节优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值