stable-diffusion 生成同一人物不同动作的尝试(多姿势图

文章介绍了如何利用稳定扩散模型(stable-diffusion)生成游戏角色的多种动作,以提高2D美术的制作效率。通过3D软件获取基础姿态,转换成骨骼图后,使用预训练模型进行图像生成,从而创建行走图和其他面向的角色动画。这种方法相比于传统方式能减少逐帧绘制的工作量,尽管目前的效果仍有提升空间,但已显示出巨大的潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原文:stable-diffusion 生成同一人物不同动作的尝试(多姿势图) - 知乎

目录

因为开发游戏常遇到缺乏美术资源的情形,因此一直在研究的一个课题是如何用AI去生成一个游戏角色的多种动作,此前也使用过对抗模型等方式做过尝试,不过效果还不能实用,以下是一些以前的研究连接。

罗培羽:自动做游戏(7),一张原画生成任意动作19 赞同 · 4 评论文章正在上传…重新上传取消

罗培羽:自动做游戏(2),自动生成人物行走图59 赞同 · 17 评论文章正在上传…重新上传取消

罗培羽:AI做游戏,扩散模型生成角色行走图76 赞同 · 18 评论文章正在上传…重新上传取消

如今扩散模型在绘图方面取得较好成果,那么能否使用预训练模型的能力,来实现同一角色的不同动作。这个研究有着比较重要的落地意义,因为一旦成功,便能够加快游戏开发2D美术的效率,减少一帧一帧去画角色行走帧动画的工作量。

效果展示

如下是使用扩散模型生成的行走图,大致还原了人物动作,虽然一些细节还不太好,但整体已经能得到较高的分辨率。也由于该实验是针对人物的动作,并没有很细致的设置prompt以及挑选生成图,若仔细调整,生成效果还会更好。

将生成的角色切出来,并作为行走图放到游戏当中,得到如下的效果。虽然动作还不是很自然,但整体已经达到一定的效果,至少比几年前的实验效果好的多。

以下展示另外一些生成的角色。这些图片分为两行三列,每一行代表角色的正面、侧面和背面、也每一列则代表同一个行走动作中的两帧动画,一帧代表迈开左脚、另一帧代表迈开右脚。

除了生成行走图,该方法也可以用于生成人物的不同角度,以下是一些生成出来的图,每一张图共有8个面向,分别代表角色旋转0°、45°、90°……时的姿态。

实现方法

首先是获取基础姿态,通过3D软件导入基础模型,并截出所需的动作图像,如下图是构成行走图的六个姿态。

转换为骨骼

拼接组合

然后生成图片即可,而要作为动作图放到游戏,还需要做些抠图处理。

不同面向的角色生成也类似,构建骨骼图。

得到一张拼接图

然后用于生成

下一计划

目前仅仅是一些使用技巧,然而我也从Controlnet和Lora的实现方法中得到一些灵感,能否结合预训练模型、再加上自己的一些微调,使得模型具备拟合正面图像的生成能力呢,有空继续尝试。

PS:如果你想从事游戏开发,就不得不提到《百万在线:大型游戏服务端开发》这本书,它是一本很实用的游戏服务端书籍,看完基本就能达到一定的开发水平,甚至比那些工作了几年的人还要更强。

<think>好的,我现在需要回答用户关于如何实现AI漫画推文画风和人物统一的问题。首先,我得理解用户的需求。用户可能是在用AI工具生成漫画或推文时遇到了画风不一致或人物形象变化的问题,想要找到解决方法。 接下来,我应该考虑这个问题的各个方面。画风和人物统一在传统漫画制作中通常由主笔和团队协作控制,但使用AI生成时,因为模型的随机性,可能会出现不一致的情况。所以,我需要从多个角度分析,比如模型选择、参数设置、提示词设计、后期处理等。 首先,选择同一系列的模型是关键。不同模型有不同的训练数据和风格,混用可能导致不一致。比如,用户如果用Stable Diffusion不同版本,可能会得到不同结果。需要建议用户固定使用一个适合漫画风格的模型,比如专门训练过的动漫模型。 然后是角色设定模板。用户需要详细设定人物的外貌特征,如发型、颜色、服装等,并且这些设定需要在每次生成时作为提示词输入。可能需要建议用户建立详细的角色档案,甚至使用LoRA这样的微调方法来训练特定人物模型。 提示词优化也很重要。用户需要学习如何编写精确的提示词,包括画风的关键词,比如“日式漫画风格”、“赛璐璐上色”等,并且保持这些关键词的一致性。同时,负面提示词可以排除不想要的元素,比如“3D渲染”或“写实风格”。 种子固定也是一个技术点。大数AI生成工具允许设置随机种子,固定种子可以在相同参数下生成风格一致的像。用户可能需要指导如何找到并固定种子值。 分镜与构方面,可能需要建议用户先规划好分镜,统一视角和构规则,比如使用相同的镜头角度或画面比例,这样即使生成,也能保持视觉连贯性。 后期处理同样不可忽视。即使AI生成像有微小差异,通过后期调整色彩、线条或添加统一滤镜,可以增强整体一致性。可能需要推荐一些工具,比如Photoshop或GIMP,或者AI自带的后期功能。 此外,工作流程的优化也很重要。用户可能需要建立一套标准流程,从角色设定到生成、检查、调整,形成闭环,确保每一步都符合统一标准。 最后,用户可能需要了解目前的技术限制,AI生成的不可控因素仍然存在,完全一致可能需要次迭代和人工修正。所以,适当调整期望,结合人工审核和调整是必要的。 现在需要把这些思路整理成结构清晰的回答,分点说明,使用用户易懂的语言,避免技术术语过,同时确保每个步骤都有实际的操作建议。还要注意使用正确的中文表达,以及LaTeX格式的应用,不过这个问题可能涉及较少的数学公式,但如果有相关参数或技术术语,可能需要用行内公式标注,比如模型版本或参数设置中的数值示例。</think>要实现AI漫画推文的画风和人物统一,需通过技术控制与流程优化解决AI生成中的随机性问题。以下是分步骤实现方法: --- ### 一、**选择统一生成模型** 1. **固定模型版本** - 使用同一系列模型(如Stable Diffusion的动漫特化版本`Anything V5`或`Waifu Diffusion`)。 - 避免混合不同模型,例如写实模型与卡通模型混用会导致风格撕裂。 2. **微调专用模型** - 通过LoRA或Dreambooth训练角色专属模型,例如: - 输入20-50张同一人物角度片,生成个性化模型。 - 公式示例:微调后模型输出$G_{\text{new}}(x) = G_{\text{base}}(x) + \Delta W \cdot x$($\Delta W$为微调权重)。 --- ### 二、**精准控制生成参数** 1. **提示词(Prompt)设计** - **画风关键词**:固定风格描述,如`"日漫赛璐璐风格,粗线条,平涂色彩,背景虚化"`。 - **角色特征**:细化到发色`#FFA500`、瞳色`#00BFFF`、服饰细节(如`"红色蝴蝶结+白色水手服"`)。 - **负面提示词**:排除`"3D渲染,写实阴影,照片质感"`。 2. **固定随机种子(Seed)** - 生成满意像后记录种子值(如`Seed=123456`),后续生成使用相同种子保证一致性。 --- ### 三、**构建角色模板库** 1. **三视设定** - 预先生成角色的正面、侧面、背面,作为后续生成的参考。 - 示例流程: ``` 输入:角色描述 + "正交视角,线稿,无背景" 输出:存入模板库供AI对齐使用 ``` 2. **表情与动作库** - 批量生成同一角色种表情(微笑/愤怒)和动作(奔跑/坐姿),建立可调用素材库。 --- ### 四、**后期标准化处理** 1. **色彩校正** - 用PS/Lightroom对成稿执行: - 统一色相曲线(如RGB曲线拉高红色中间调) - 添加全局色彩滤镜(如`漫画网点效果.layer`) 2. **线条强化** - 使用`Waifu2x`放大并锐化线条,或通过ControlNet的`Lineart`预处理器提取统一线稿。 --- ### 五、**工作流优化** 1. **分镜预规划** - 先用AI生成缩略分镜(Thumbnail),确定构后再细化,避免重复生成浪费资源。 2. **自动化脚本** - 编写批量生成脚本(如Auto1111的API调用),确保每张应用相同参数: ```python api.generate(prompt="固定描述", seed=123456, steps=30, cfg_scale=7) ``` --- ### 六、**技术限制与应对** - **目前痛点**:AI对复杂动作(如手指交叉)易出错,需手动修正。 - **解决方案**:生成后使用`OpenPose`骨骼编辑器调整姿势,再局部重绘。 --- 通过上述方法,可实现约80%-90%的风格统一度,剩余差异需通过人工审核微调。随着模型控制技术进步(如Consistency Decoder),未来自动化程度将进一步提升。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值