【跳槽】回头草,该不该吃?能不能吃?

  据51job近期网上调查显示,有 58.06%的公司是欢迎回头草员工,而有22.58%的公司持不欢迎态度;另外19.35%的公司表示很难说。

    对于公司而言,接收回头员工并不是仅仅因为节约成本,回头马有利也有弊,有时候公司宁愿接受一个知道有多坏的人而不是找一个不知有多坏的人。

公司:我们也有顾虑

    我是皮卡丘:
我们公司现在有个女孩就是回头员工,其实我是不想录用,但老板为了降低成本选择了她。成本是老板最看重的东西,至于忠诚度,一般来说我们会签合同,合同上会注明离职后2年内不可以在同行业发展,违约的话需赔偿相当一笔金额。人与人之间的信任度已经越来越低了,如果我是老板,忠诚和成本会是个矛盾,很难抉择,除非候选人中有更合适的,否则宁愿节约成本考虑回头马,不过同时要做好充分的思想准备,因为此马也会再对我不忠。另外一个顾虑是,旧东家继续聘用,是否会让马儿很得意呢?

     清清河边草:看具体情况而定,主要看这个人人品怎么样,还有就是他想回公司担当什么样的工作职位。但是如果吃回头草的个人和其直接领导心胸不够宽广的话,回头员工就很难重新融入团队。回头马容易缺乏斗志,对企业过于熟悉,容易钻企业一些空子。所以企业在招人时要掌握两点,回头马必须人品好,水平也必须为同工种偏上。

     黑与白:跳槽总有原因,这个原因或许在员工本身也或许在企业。

    如果是员工自身原因,那么就要考虑员工对企业的忠诚度。今天可以去这家做明天会去那家做,企业的确给了一些人回头的机会,也许有一部分人会觉得找工作很不容易,回头的主要原因就是跳槽以后觉得还是老东家好。但是在原来的企业做了又为什么要跳槽呢?是人往高处走,水往低处流吗?既然有一就一定会有二,只是时间问题,人都是有贪欲的。
 
    企业有自己的企业文化,这种文化有的是从企业创业开始慢慢发展出来(有逐步修正的过程。);也有的是一边修正一边借鉴比较优秀的企业的发展思路,所以如果企业文化是员工离开的主因,那么如何接受他回头?

公司为什么会接受回头马?

    回头失败时,人们才会想起“好马不吃回头草”,后悔连连;回头成功时,人们会称为“浪子回头金不换”,所以找到公司愿意接受回头马的原因,也许就找到成功回头的金钥匙。

     一笑翻云:招收回头员工,从企业角度看,有以下几点优点:

    1.对公司运做熟悉,上手快。现在的企业人员流动越来越快,我可不愿意我的公司成为100%培训的单位,也许花了大半年培养出来的人才,明天就到别的单位去了。

    2.忠诚度要高于一般员工。今天能够想到回到曾经的单位,一定程度上就有长久呆下去的打算。稳定的员工是企业持续发展的保障,同时,他们一定程度上还可以担起稳定新员工的重任,至少他能回来证明你的企业具有价值。回头的员工往往带有一些愧疚心理,对于企业再次以开放欢迎的心态给自己提供机会,他们会更加珍惜自己的岗位,加倍努力工作,这无疑是一种推进事业发展的内部源动力。经过与外部环境的对比,员工选择返回,会对企业的文化和价值观念有更深刻的理解和认同。

    3.证明你的企业具有人情味。

     外漂一族:其实主要看公司的企业文化,个人认为欢迎回归的公司才能有更大的发展。一个再有实力的公司也不能给每个员工提供相应的培训机会,但跳槽的人如果是金子的话,他会通过公司转换中学到自己想得到的东西,来提升个人能力的。任何一个想回归原公司的人都会拿出很大的勇气和相应的能力来竞争自己申请的职位,通过社会的环境再淘出来的可能是真金。回归的人带给原公司也是一股新鲜的血液,任何一家公司都要不断注入新鲜的血液才会发展。比如伊利乳业公司就是这样。

     Vickyqiuqing:企业欢迎的是有能力的员工,而不是随意的员工。如果能力达不到。企业同样不会录用,录用的条件不会降低。人力成本低这是相对的,并不是因为你是回头员工,老板就少给,正规的企业是按照薪酬体系来给薪资的,有能力的员工到哪里都会有所作为。现在很多企业对于中高层职务都有回聘制度,因为人的离职有时候会被周边的很多因素所左右,相信每一个回头的员工都是经过慎重选择的。

     简单:“人往高处走,水往低处流”。现在很多人讲企业忠诚度,但也有很多人讲个人职业发展规划,如果回头适合个人职业发展规划,何乐而不为呢?“有多少爱可以重来”?又有多少人有“勇气”做回头草,或者接受回头草现象?企业如何看待回头马的问题,本质上反映了企业如何以人为本进行企业管理和发展的问题。

    造成员工离职的原因从企业角度而言,往往集中在几方面:上级对下属的授权和信任程度;激励体系的有效性(包括公平性、合理性和适应性);员工职业生涯规划中企业是否给予了员工足够的成长空间和学习机会;工作环境的好坏;企业文化及其核心价值观是否为多数员工认同和接受。这些内部管理和文化因素对企业的成长和发展时刻产生着重大的影响。

  当员工离职时或离职一段时间以后,一般都能够比较坦然地对原有企业存在的种种问题从不同角度进行评价,通过与其沟通了解离职的真正原因,分析存在的问题及其背后的原因,然后针对这些因素进行改进这才是人力资源管理的王道。

     流逝的那一段:公司考虑到,相比新人回头马儿更为熟悉企业文化和公司业务,因而可以在更短的时间内胜任工作,可以降低入职培训和岗位培训的成本。 回头者来到自己熟悉的环境,由于对人员、业务流程和管理方式非常了解,可以很快融入原有的文化,进入发挥自己才能的工作状态,缩短了新人进入后从不适应到逐渐适应的磨合期,大大降低了学习成本,直接提高了企业的效益。

    所谓“浪子”回头,相对而言忠诚度会比较高,不会一而再地跳槽。个人对于回头一定是经再三考虑,不然谁会放下面子再回头呢?总之对公司,有用的人都会酌情考虑的,除非是以前开除的,那是不可能再录用了。

猎头支招

    无论对于公司还是对于个人,接受回头或是选择回头都需要慎重。并不是所有的工作都可以再来,如何提高双方的成功率,前程无忧高级猎头经理李先生为大家支招。

    当公司收到或是考虑要招回头马时,首先要查询回头者的公司档案,查看有没有不良记录,曾经在公司担任什么岗位,业绩如何等等;其次是了解回头者当时是为什么离开公司的,如果当时离开的原因目前公司仍然存在,比如公司的企业文化是不太有可能变化的,那么这样的回头还是不要接受,因为回头者很有可能再次离开;再有,向熟知的人做背景调查,观察一些档案中无法记录的软性指标,比如人际关系是否良好,是否有沟通合作精神,离职是否完美,曾经的工作态度如何等等;还有就是与回头者做一次交谈,了解他们回头的真实原因。

    对于个人,更应把回头看作是一种特殊的跳槽。不要因为目前的状况不如意而冲动回头,很多例子表明在外面越成功,也越容易回头;不要因为前任老板的优厚待遇而忘记曾经迫使自己离开的原因;不要不做任何了解(旧公司的经营情况如何,公司是不是比你离开时更糟糕了等等);回头有利也有弊,你有没有想好把“弊”最小化而把利最大化;最后当你决定回头时,同时也要清醒地明白,虽然回的是老公司,周围都是老朋友,但很有可能在你离开的时间内,你已经比他们落下了一程,所以要保持沟通心态,积极赶上。
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值