端到端自动驾驶主要玩家

1、主机厂

小鹏汽车

2024年5月20日,小鹏汽车举办AIDay发布会,董事长、CEO何小鹏宣布端到端大模型上车。小鹏的端到端大模型有三个组成部分:神经网络XNet+控大模型XPlanner+大语言模型XBrain。小鹏汽车在发布会上表示,端到端大模型上车后,18个月内小鹏智能驾驶能力将提高30倍,每2天内部将做次智驾模型的送代。

图片

鸿蒙智行(类主机厂)

2024年4月24日,华为智能汽车解决方案发布会上,华为发布了以智能驾驶为核心的全新智能汽车解决方案品牌一一乾崑,并发布了并发布了ADS3.0。乾崑ADS3.0的技术架构,感知部分采用GOD(GeneralObjectDetection,通用障碍物识别)的大感知网络,决策规划部分采用PDP(Prediction-Decision-Planning,预测决策规控)网络实现预决策和规划一张网。ADS3.0在ADS2.0基础上实现了决策规划的模型化,为端到端架构的持续演进莫定了基础。

图片

蔚来汽车

蔚来在高阶辅助驾驶研发领域一直保持领先。据晚点Auto报逆,自2023年下半年开始,蔚来已经投入几十人团队研发端到端自动驾驶,并计划于2024年上半年上线基于端到端的主动安全功能。蔚来智能驾驶研发副总裁任少卿认为,自动驾驶的大模型需要拆解成若干个层级,第二步是模型化,行业基本已经完成了感知的模型化,但是规控的模型化方面头部公司也没有完全做好,第二步是端到端,去掉不同模块间人为定义的接口,第三步是大模型。

零一汽车

零一汽车是一家新能源重卡科技公司。零一致力于在核心动力总成、集成式热臂理、自动驾驶技术等核心系统上实现全裁自研,并通过软件定义硬件,利用数据和技术重构供应链,实现自主安全可控与结构性成本优化。2024年5月,零一汽车成功发布了两款量产纯电牵引车"惊整与“小满"。

近期,零一也推出了基于大模型的端到端自动驾驶系统。整个系统使用摄像买和导航信息作为输人,经过多模态大诺言模型的解码产生规控信号和辑推理信息,将系统复杂度降低90%。通过模拟人类的驾驶行为与思考过程,模型在仅使用视觉信息的情况下展现了丰常强的泛化能力,并在多个数据集中获得世界第一的成绩。零一计划在2024年底实现端到端自动驾驶的部署上年,2025年在商用年与乘用车平合上同时实现量产,并计划于2026年实现高阶自动驾驶的大规模商业化运营。

### 端到端自动驾驶的实现方法 #### 方法概述 端到端自动驾驶是一种通过单一神经网络直接从传感器输入(如摄像头图像)映射到控制输出(如方向盘角度、油门和刹车指令)的技术。这种方法减少了传统模块化架构中的复杂性和冗余性,使得系统更加简洁高效[^1]。 #### 技术细节 为了构建一个完整的端到端自动驾驶解决方案,可以考虑以下几个方面: 1. **数据收集与标注** 数据驱动是端到端模型的核心之一。需要大量的真实世界驶数据来训练模型。这些数据应包括多种天气条件下的视频流以及相应的驶员操作记录[^2]。 2. **模型设计** 使用深度学习框架搭建适合的任务需求的卷积神经网络(CNN),或者更先进的Transformer结构如MotionFormer来进行多模态融合处理。下面是一个简单的CNN例子用于初步理解如何创建这样的模型: ```python import tensorflow as tf model = tf.keras.Sequential([ tf.keras.layers.Conv2D(24, kernel_size=(5, 5), strides=(2, 2), activation='relu', input_shape=(66, 200, 3)), tf.keras.layers.Conv2D(36, kernel_size=(5, 5), strides=(2, 2), activation='relu'), tf.keras.layers.Conv2D(48, kernel_size=(5, 5), strides=(2, 2), activation='relu'), tf.keras.layers.Conv2D(64, kernel_size=(3, 3), activation='relu'), tf.keras.layers.Flatten(), tf.keras.layers.Dense(100, activation='relu'), tf.keras.layers.Dense(50, activation='relu'), tf.keras.layers.Dense(10, activation='relu'), tf.keras.layers.Dense(1) # 输出层,例如转向角预测 ]) model.compile(optimizer=tf.keras.optimizers.Adam(), loss='mse') ``` 3. **训练过程** 利用大规模的数据集对上述模型进行监督学习训练。目标是最小化实际动作值与预测之间误差函数。注意调整超参数以获得最佳性能并防止过拟合现象发生[^3]。 4. **部署优化** 虽然简化了代码数量级,但由于增加了对于实时推理速度的要求,所以往往还需要针对特定硬件做进一步剪枝量化等工作降低延迟同时保持较高精度水平[^4]。 --- ### 工具推荐 - **ROS (Robot Operating System)**: 提供丰富的库支持机器人应用开发,也适用于模拟测试阶段。 - **Python**: 主要语言环境,在数据分析建模等方面具有强大生态系统优势。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值