Lqr算法

1.横向控制动态模型

a.自行车动态模型

在车辆高速行驶的时候、每个车轮上的方向和车辆的方向一致的假设就不成立,即non-zero slip angle
汽车动力学模型:伸出右手-中指向上☞、食指向前,拇指向右;其中食指->Roll、拇指->pitch、中指->Yao.

b.线性自行车动态模型

自行车运动学模型:
自行车模型做出如下假设:

  • 纵向速度恒定、左右车轮集中成一个车轮
  • 忽略悬架运动、道路的倾斜、空气阻力影响,以便对汽车的纵向和横向的运动解耦分析;
    R是车辆在转弯的过程中,后轴中心到旋转中心的距离 ψ ˙ = V R ; F ( 向心 ) = V x 2 R \dot{\psi}=\frac{V}{R}; F( 向心)=\frac{V_{_x}^2}{R} ψ˙=RV;F(向心)=RVx2
    代入上式
    a y = ( d 2 y d t 2 ) = m ( v v + v x ψ ˙ ˙ ) a_{_y}=(\frac{d^2y}{dt^2})=m(\dot{v_{_v}+v_{_x}\dot{\psi}}) ay=(dt2d2y)=m(vv+vxψ˙˙)
    l f ⋅ F y f − l r ⋅ F y r = I z ψ ¨ l_{_f}\cdot{F_{_{yf}}}-l_{_r}\cdot{F_{_{yr}}}=I_{_z}\ddot{\psi} lfFyflrFyr=Izψ¨
    我们可以使用 r = ψ ˙ r=\dot{\psi} r=ψ˙代表偏航角yaw的角速度
    在经过了大量的轮胎打滑实验得出结论:
    对于slip-angles较小时,实现得到轮胎滑移角的线性函数
    轮胎变量
  • 前轮滑移角 α f \alpha_{_f} αf
  • 后轮滑移角 α r \alpha_{_r} αr

前后轮侧向力
轮胎滑移角(split_angles)针对与轮胎和车辆的纵轴而言;
对于小split-angles,实验证明,轮胎侧向力与“split-angles”呈现正比关系
F y f = 2 C f α f = 2 C f ( δ − θ v f ) F_{_{yf}}=2C_{_f}\alpha{_{_f}}=2C_{_f}(\delta-\theta_{_{vf}}) Fyf=2Cfαf=2Cf(δθvf)
F y r = 2 C r α r = 2 C r ( δ − θ v r ) F_{_{yr}}=2C_{_r}\alpha{_{_r}}=2C_{_r}(\delta-\theta_{_{vr}}) Fyr=2Crαr=2Cr(δθvr)
对于自行车模型的前轮,前轮速度方向和在车身x轴和y轴的分量构成直角三角形
θ v f = t a n − 1 v f y v f x = t a n − 1 ( v y + l r r V x ) \theta_{_{vf}}=tan^{-1}\frac{v_{_{fy}}}{v_{_{fx}}}=tan^{-1}(\frac{v_{_y}+l_{_r}r}{V_{_x}}) θvf=tan1vfxvfy=tan1(Vxvy+lrr)
θ v r = t a n − 1 v r y v r x = t a n − 1 ( v y − l r r V x ) \theta_{_{vr}}=tan^{-1}\frac{v_{_{ry}}}{v_{_{rx}}}=tan^{-1}(\frac{v_{_y}-l_{_r}r}{V_{_x}}) θvr=tan1vrxvry=tan1(Vxvylrr)
r = ψ ˙ r=\dot{\psi} r=ψ˙偏航速度等于偏航轴角速度
由于牛顿第一定律
F ˙ y f + F ˙ y r = m a y = m ( v y ˙ + v x ψ ˙ ) \dot{F}_{_{yf}}+\dot{F}_{_{yr}}=ma_{_y}=m(\dot{v_{_y}}+v_{_x}\dot{\psi}) F˙yf+F˙yr=may=m(vy˙+vxψ˙)
l f F ˙ − l r F ˙ y r = I z ψ ¨ l_{_f}\dot{F}-l_{_r}\dot{F}_{_{yr}}=I_{_z}\ddot{\psi} lfF˙lrF˙yr=Izψ¨
( F y f c o s ( δ ) − F x f s i n ( δ ) ) + F y r = m ( v y ˙ + v x r ) (F_{_{yf}}cos(\delta)-F_{_{xf}}sin(\delta)) + F_{_{yr}}=m(\dot{v_{_y}}+v_{_x}r) (Fyfcos(δ)Fxfsin(δ))+Fyr=m(vy˙+vxr)
l f ( F y f c o s ( δ ) − F x f s i n ( δ ) ) − l r F y r = I z ψ ¨ = I z r ˙ l_{_f}(F_{_{yf}}cos(\delta)-F_{_{xf}}sin(\delta))-l_{_r}F_{_{yr}}=I_{_z}\ddot{\psi}=I_{_z}\dot{r} lf(Fyfcos(δ)Fxfsin(δ))lrFyr=Izψ¨=Izr˙
总结所示的横向力(假设纵向速度是可控的)
其中r是关于偏航角的角速度
摒弃上节所讲滑移约束,假设是匀速运动
可以通过:
α f = δ − t a n − 1 ( v y + l f r v x ) \alpha_{_f}=\delta-tan^{-1}(\frac{v_{_y}+l_{_f}r}{v_{_x}}) αf=δtan1(vxvy+lfr)
α r = − t a n − 1 ( v y − l r r v x ) \alpha_{_r}=-tan^{-1}(\frac{v_{_y}-l_{_r}r}{v_{_x}}) αr=tan1(vxvylrr)
F y f = c f α f = c f [ θ − t a n − 1 ( v f + l r r v x ) ] F_{_{yf}}=c_{_f}\alpha_{_f}=c_{_f}[\theta-tan^{-1}(\frac{v_{_f}+l_{_r}r}{v_{_x}})] Fyf=cfαf=cf[θtan1(vxvf+lrr)]
F y r = c r α r = − c r t a n − 1 ( v y − l r r v x ) F_{_{yr}}=c_{_r}\alpha_{_r}=-c_{_r}tan^{-1}(\frac{v_{_y}-l_{_r}r}{v_{_x}}) Fyr=crαr=crtan1(vxvylrr)
得到:
v ˙ y = c f [ θ − t a n − 1 ( v y + l f r v x ) ] c o s ( δ ) − c r t a n − 1 ( v y − l r r v x ) − F x y s i n ( δ ) m − v x r \dot{v}_{_y}=\frac{c_{_f}[\theta{}-tan^{-1}(\frac{v_{_y}+l_{_f}r}{v_{_x}})]cos(\delta)-c_{_r}tan^{-1}(\frac{v_{_y}-l_{_r}r}{v_{_x}})-F_{_{xy}}sin(\delta)}{m}-v_{_x}r v˙y=mcf[θtan1(vxvy+lfr)]cos(δ)crtan1(vxvylrr)Fxysin(δ)vxr
r ˙ = l f c f [ δ − t a n − 1 ( v y + l f r v x ) ] + l r c r t a n − 1 ( v y − l r r v x ) − l f F x f s i n ( δ ) I z \dot{r}=\frac{l_{_f}c_{_f}[\delta-tan^{-1}(\frac{v_{_y}+l_{_f}r}{v_{_x}})]+l_{_r}c_{_r}tan^{-1}(\frac{v_{_y}-l_{_r}r}{v_{_x}})-l_{_f}F_{_{xf}}sin(\delta)}{I_{_z}} r˙=Izlfcf[δtan1(vxvy+lfr)]+lrcrtan1(vxvylrr)lfFxfsin(δ)
1.应用小角度假设简化模型
*假设 δ \delta δ=0 所以 s i n ( δ ) ≈ 0 , c o s ( δ ) ≈ 1 , t a n − 1 ( δ ) ≈ θ sin(\delta)\approx0,cos(\delta)\approx1,tan^{-1}(\delta)\approx\theta sin(δ)0,cos(δ)1,tan1(δ)θ集合上面的两个式子得到
v ˙ y = − c f v y − c f l f r m v x + c f δ m + − c r v y + c r l r r m v x − v x r \dot{v}_{_y}=\frac{-c_{_f}v_{_y}-c_{_f}l_{_f}r}{mv_{_x}}+\frac{c_{_f}\delta}{m}+\frac{-c_{_r}v_{_y}+c_{_r}l_{_r}r}{mv_{_x}}-v_{_x}r v˙y=mvxcfvycflfr+mcfδ+mvxcrvy+crlrrvxr
r ˙ = − l f c f v y − l f 2 c f r I z v x + l f c f δ I z + l z c r v y − l 2 c r r I z v x \dot{r}=\frac{-l_{_f}c_{_f}v_{_y}-l^{2}_{_f}c_{_f}r}{I_{_z}v_{_x}}+\frac{l_{_f}c_{_f}\delta}{I_{_z}}+\frac{l_{_z}c_{_r}v_{_y}-l^{2}c_{_r}r}{I_{_z}v_{_x}} r˙=Izvxlfcfvylf2cfr+Izlfcfδ+Izvxlzcrvyl2crr
2.根据变量重新分类

c.模型参数辨识

与之前的模型不同,动态自行车模型的参数没有那么方便直接测量,然而一个可行的办法就是给车的四个轮子下放上称;用一根无质量的杆将两个点质量结合在一起;

车辆的转动惯量,近似的看作

2.LQR-线性二次调节器

a.什么是Lqr

b.一维标量示例

c.通解和Raccati方程

d.LQR使用案例

3.车辆横向最优控制

a.路径坐标模型

b.使用Lqr进行轨迹跟踪

c.带有Preview的轨迹跟踪

lqr的好处:若我们将系统设置为以误差为参考的系统,就可以直接套用lqr的结论得到一个相对优化的控制器。并且在实验的过程中如果,横向误差收敛的很慢,可以考虑提高;若前轮转角出现震荡,可以考虑降低;​​​​​​​

lqr的缺点:

1、由于lqr是一个线性控制器,默认小 ,面对曲率过大的情况表现不佳;2、lqr只关注于当前点的情况,并没有考虑到未来路径的情况,即较短视;
lqr性能的提高
思路:用已知的路径做出预判,提前打方向盘,就可以提高性能

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值