一、项目背景与研究价值
在现代制造业中,产品装配质量直接影响出厂安全与客户体验。例如在电子产品、家电、汽车等生产线上,螺丝是否缺失、零部件是否正确安装,是装配完整性最关键的指标之一。人工质检由于效率低、主观性强,已无法满足高效高精的质量控制需求。
为此,本文设计并实现一套基于YOLOv10的螺丝/零件缺失检测系统,结合PyQt5界面,用于自动识别产品装配中是否遗漏重要零件,如螺丝、垫圈、连接杆等。
系统支持:
- 支持导入图像/批量文件;
- 自动识别装配是否完整;
- 支持模型训练、评估;
- UI界面简单友好,部署轻量。
二、数据集准备
2.1 推荐数据集来源
推荐参考数据集(可微调):
1)公开参考数据集
-
Screw dataset(日本某制造企业公开):
-
包含不同种类螺丝是否存在、旋紧、松动的图像。
-