四元数与角轴、旋转矩阵、so(3)、SO(3) 的关系

四元数定义

q = [ s , υ ] T , s = q 0 ∈ R , υ = [ q 1 , q 2 , q 3 ] T ∈ R 3 \left.q=\left[\begin{matrix}{s,\upsilon}\\\end{matrix}\right.\right]^{\mathrm{T}},s=q_{0}\in\mathbb{R},\upsilon=\left[\begin{matrix}{q_{1}},q_{2},q_{3}\\\end{matrix}\right]^{\mathrm{T}}\in\mathbb{R}^{3} q=[s,υ]T,s=q0R,υ=[q1,q2,q3]TR3
可用单位四元数表示三维空间的旋转
用虚四元数表示空间中一点 p = [ 0 , x , y , z ] T = [ 0 , υ ] T p = {\left[ {0,x,y,z} \right]^{\rm{T}}} = {\left[ {0,\upsilon } \right]^{\rm{T}}} p=[0,x,y,z]T=[0,υ]T
用四元数q旋转p后的点 p ′ = q p q − 1 p' = qp{q^{ - 1}} p=qpq1

四元数与角轴、旋转矩阵、so(3)、SO(3) 的关系

R = exp ⁡ ( ϕ ∧ ) = E x p ( ϕ ) = E x p ( θ n ) R = \exp ({\phi ^ \wedge }) = {\rm{Exp(}}\phi {\rm{) = Exp(}}\theta n{\rm{)}} R=exp(ϕ)=Exp(ϕ)=Exp(θn) ⇕ \Updownarrow q = [ cos ⁡ θ 2 , n sin ⁡ θ 2 ] T = exp ⁡ ( [ 0 , 1 2 θ n ] T ) q = {[\cos {\theta \over 2},n\sin {\theta \over 2}]^{\rm{T}}} = \exp ({[0,{1 \over 2}\theta n]^{\rm{T}}}) q=[cos2θ,nsin2θ]T=exp([0,21θn]T)
即单位四元数为纯虚四元数 [ 0 , 1 2 θ n ] T {[0,{1 \over 2}\theta n]^{\rm{T}}} [0,21θn]T的指数映射,纯虚四元数可以理解为四元数形式的李代数,其虚部为so(3)李代数一半
当四元数表示的旋转量十分小时, q = [ 1 , 1 2 θ n ] q = [1,{1 \over 2}\theta n] q=[1,21θn]
四元数与旋转矩阵一样,满足左定右动乘法规则

  • 28
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

<lumen>

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值