Meta发布Llama 3.3:70B参数模型达到405B性能水平,部署成本大幅降低

Meta于12月6日重磅发布新一代大语言模型Llama 3.3,以突破性的技术创新在模型效率与性能之间取得了显著平衡。该模型以700亿参数的规模达到了此前4050亿参数模型的性能水平。

技术突破

Llama 3.3采用优化的transformer架构,融合了监督式微调(SFT)和基于人类反馈的强化学习(RLHF)等先进技术。模型还整合了分组查询注意力(GQA)机制,显著提升了推理阶段的性能和可扩展性。值得注意的是,模型支持128K tokens的上下文长度,约等于400页文本,使其在长文本处理方面具备强大能力。

多语言支持

在语言能力方面,Llama 3.3实现了对8种语言的全面支持,包括英语、德语、法语、意大利语、葡萄牙语、印地语、西班牙语和泰语,充分展现了其在跨语言处理领域的实力。

降本增效

最引人注目的是模型在部署成本方面的突破性进展。相较于前代产品,Llama 3.3在GPU内存需求方面实现了显著优化:

  • 对于标准的80GB Nvidia H100 GPU,负载降低可达24倍

  • GPU内存需求最高可降低1940GB

  • 按每块H100 GPU约25,000美元计算,硬件成本可节省高达60万美元

开源与许可

Meta选择通过开源方式发布Llama 3.3,用户可以通过Meta、Hugging Face、GitHub等平台获取模型。值得注意的是,模型采用了特殊的社区许可证制度:

  • 支持用户合法使用、复制、分发和修改模型及其输出

  • 允许模型输出再利用,包括合成数据生成和模型蒸馏

  • 月活跃用户超过7亿的大型组织需要获取商业许可

行业影响

Meta副总裁Ahmad Al-Dahle公布的测试数据显示,Llama 3.3在多个行业基准评测中的表现超越了包括谷歌Gemini 1.5 Pro、OpenAI的GPT-4o和亚马逊Nova Pro在内的多个竞品模型。这一成果不仅展示了Meta在AI领域的技术实力,也为整个行业在模型效率优化方面提供了新的参考范式。

这次发布恰逢OpenAI举办技术直播活动期间,展现了主要科技公司在AI领域的激烈竞争。通过在模型效率与性能之间找到新的平衡点,Llama 3.3的发布可能会推动整个AI行业向更高效、更经济的方向发展。

AI大模型学习路线

如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!

扫描下方csdn官方合作二维码获取哦!

在这里插入图片描述

这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!

请添加图片描述
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

100套AI大模型商业化落地方案

请添加图片描述

大模型全套视频教程

请添加图片描述

200本大模型PDF书籍

请添加图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

LLM面试题合集

请添加图片描述

大模型产品经理资源合集

请添加图片描述

大模型项目实战合集

请添加图片描述

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员辣条

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值