【即插即用模块】Transformer篇 | TGRS 2025 | CWMSA:压缩窗口自注意力,替换传统W-MSA准确率提升25%!
本文提出了一种增强空间频率协同网络(ESFS)用于多光谱和高光谱图像融合。核心创新是压缩窗口多头自注意力模块(CW-MSA),通过特征压缩降低计算复杂度,同时保留局部依赖捕捉能力。CW-MSA采用跨尺度注意力机制,Query来自原始特征,Key/Value来自压缩特征,将计算复杂度从O(N²)降至O(N×N')。实验表明,该方法在CAVE×4数据集上性能优于现有SOTA方法,计算量减少30%,同时保持融合质量。消融研究验证了CW-MSA在平衡计算效率和特征表达能力方面的有效性。该模块可直接替代标准窗口注意力
易懂案例:用班费记账来理解区块链Fabric背书管理系统链码、背书节点调用、背书签名、响应消息、Invoker()方法是什么?各自原理、数学逻辑、区别和联系是什么?
摘要: Hyperledger Fabric的背书机制通过班费记账场景类比解析: ESCC 是审批规则执行器,验证背书节点权限(如班长+财务委员双签) 背书节点调用 类似将申请提交给指定审批人,确保权限合规 背书签名 采用加密签名(如ECDSA),保证唯一性和防篡改 响应消息 包含模拟结果和签名,作为记账凭证 Invoke() 执行实际业务逻辑(如计算余额),生成读写集供背书验证 整个流程分离业务逻辑与审批规则,通过密码学签名和策略验证确保交易合法性。
AI大模型:python热门音乐数据分析可视化系统 Flask框架 豆瓣音乐 爬虫技术 数据仓库 计算机 大数据毕业设计(建议收藏)
本文介绍了一个基于Python和Flask框架的豆瓣音乐数据分析系统。系统采用MySQL数据库存储数据,使用Echarts实现可视化展示,通过requests爬虫技术采集豆瓣音乐数据。主要功能包括:不同专辑类型分析、音乐评分排名、评分与评价人数相关性分析、音乐发布趋势、音乐类型占比、专辑类型TOP10、作者作品数量TOP5、音乐名称词云图等8种可视化分析。系统提供用户注册登录功能,采用Flask轻量级框架搭建后端,前端使用HTML/CSS/JavaScript构建界面。项目特色在于结合爬虫技术与数据分析,为


