
【Python库和代码案例:第一课】Python 标准库与第三方库实战指南:从日期处理到 Excel 操作
🎬 艾莉丝的简介:就是是别人已经写好了的代码,可以让我们直接拿来用。一个编程语言能不能流行起来,一方面取决于语法是否简单方便容易学习,一方面取决于生态是否完备。实际开发中,也并非所有的代码都自己手写,而是要充分利用现成的库,简化开发过程。按照库的来源,可以大致分成两大类——标准库:Python自带的库.只要安装了Python就可以直接使用。第三方库:其他人实现的库,要想使用,需要额外安装。来源,可以大致分成以上两大类。Python 自身内置了非常丰富的库,在上可以看到这些库的内容:Python 官方文档简
基于Python+PyGame实现的一款功能完整的数独游戏,支持多难度选择、实时验证、提示系统、成绩记录,并采用多线程优化加载体验。(文末附全部代码)
📌 数独游戏项目摘要 本数独游戏提供三种难度选择(初级30空/中级45空/高级60空),具有以下核心功能: 实时颜色反馈(正确蓝色/错误红色) 内置提示系统(T键显示答案2秒) 成绩记录功能(分难度保存最佳用时) 流畅的交互界面(支持键盘+鼠标操作) 技术实现亮点: 多线程后台加载优化用户体验 独立存储各难度游戏状态 使用文本文件持久化保存成绩记录 模块化代码结构便于扩展 项目完整展示了Python+PyGame开发桌面游戏的完整流程,包含状态管理、UI交互、数据持久化等核心功能。
机器学习毕业设计:Python+Flask+Stacking集成学习 电影推荐与票房预测系统(KNN算法+Echarts 源码+文档)✅
本文介绍了一个基于Python技术的电影推荐与票房预测系统。项目整合了Flask框架、MySQL数据库、requests爬虫、Echarts可视化等技术,并采用机器学习算法实现核心功能。系统主要包含两个关键模块:一是基于Stacking集成学习(融合决策树、Lasso、随机森林和GDBT算法)的票房预测模块,提升预测精度;二是基于KNNWithZScore算法的个性化推荐模块。此外,系统还实现了电影数据采集与存储、多维度数据可视化展示等功能,支持普通用户、管理员和后台管理员三级角色,分别提供个性化推荐、信息





