计算机大数据毕业设计知识图谱Neo4j+LLM大模型股票行情预测系统 量化交易分析预测系统 大数据毕设(源码+LW+PPT+讲解)
摘要:本文介绍了一个基于知识图谱(Neo4j)和LLM大模型的股票行情预测系统开发任务书。该系统整合结构化数据(财报、行业分类)和非结构化数据(新闻、社交媒体),通过知识图谱存储实体关系,利用LLM进行文本分析(事件抽取、情感分析)。系统包含知识图谱构建、LLM处理、混合预测模型和可视化四大模块,采用Python、PyTorch等技术实现。项目要求覆盖500+上市公司,预测精度MAE≤2%,并具备每日动态更新能力。该方案结合图谱的结构化推理与LLM的文本处理优势,可提升股票预测的准确性和可解释性。
Java 大视界 -- 5230 台物联网设备时序数据难题破解:Java+Redis+HBase+Kafka 实战全解析(查询延迟 18ms)(438)
本文详细解析了Java在工业物联网中的实战应用,通过Redis+HBase+Kafka+AI技术栈成功解决了某汽车零部件工厂5230台设备产生的海量时序数据处理难题。项目日均处理9亿条数据,实现热数据18ms内查询、冷数据低成本存储,故障预警准确率达97.2%,累计避免600万元经济损失。文章从技术选型、架构设计到核心代码实现全面剖析,重点展示了分层架构设计(设备层→边缘网关→消息缓冲→处理层→存储层→应用层)和关键优化策略,为工业物联网大数据处理提供了可复用的生产级解决方案。
基于 Java 的消息队列选型年度总结:RabbitMQ、RocketMQ、Kafka 实战对比
消息队列技术选型分析:RabbitMQ、RocketMQ与Kafka对比 本文从实战角度对三大主流消息队列进行多维度对比分析。RabbitMQ基于AMQP协议,提供灵活路由和图形化管理,适合中小型系统;RocketMQ由阿里开发,具备金融级高可靠性和高吞吐特性;Kafka则专为高吞吐流处理设计,与大数据生态深度集成。三者各具特色:RabbitMQ路由灵活但吞吐有限,RocketMQ在事务消息和顺序消息方面表现优异,Kafka则在大规模数据处理上优势明显。文章通过架构图、性能指标表和典型场景分析,为开发者提供
基于大数据Hadoop Hive+智能AI大模型+SpringBoot+网络爬虫的电影数据分析系统的设计与实现(精品源码+精品论文+上万数据集+答辩PPT)
随着大数据技术的迅速发展,如何高效管理和分析海量的电影数据成为研究热点。本文设计并实现了一种基于Hive的电影数据分析系统,旨在通过分布式数据处理技术,对电影信息进行采集、存储、分析与展示。系统分为用户端和管理员端,用户端提供电影浏览、论坛交流、资讯阅读和AI智能推荐等功能,增强用户交互体验;管理员端则包括用户管理、内容管理、论坛管理及系统维护等模块,实现对系统的全面监控与管理。系统后端采用Hive进行大数据分析,提升了对用户行为数据和电影热度的统计效率。





