Java 大视界 -- Java 大数据在智能农业温室环境调控与作物生长模型构建中的应用
Java大数据在智能农业温室中的应用 摘要 本文探讨了Java大数据技术在智能农业温室环境调控与作物生长模型构建中的创新应用。传统农业生产依赖人工经验,面临温度调控滞后、湿度管理不当等问题,导致作物减产10%-20%。智能温室通过传感器网络采集海量环境数据,但数据处理成为关键挑战。 Java大数据技术通过多元数据采集传输(TCP/IP协议)、高效数据处理(Spark框架)和智能决策模型(机器学习算法)实现了温室环境的精准调控。同时,Java技术整合多源数据(作物特性、土壤肥力、气象数据),构建高精度生长预测
Flink【基础知识 01】简介+核心架构+分层API+集群架构+应用场景+特点优势(一篇即可大概了解Flink)
摘要:Apache Flink 是一个支持高吞吐、低延迟的实时分布式处理框架,能够对有界和无界数据流进行有状态计算。其核心架构分为API层、Runtime层和部署层,支持流批统一处理。Flink采用分层API设计,包括SQL/Table API、DataStream/DataSet API及底层Process Function。集群采用Master-Slave架构,由JobManager、TaskManager等组件协同工作,通过资源管理和任务调度实现高效处理。相比Spark的微批处理,Flink提供纯实时



