Java 大视界 --Java 大数据在智能教育学习资源整合与知识图谱构建中的深度应用(406)
针对智能教育中资源散乱(重复率 42%)、知识孤立(83% 学生衔接断层)的痛点,以华东某省属重点高校实战案例为基础,用 Java 大数据构建 “资源整合 + 知识图谱” 系统。通过 Spark 实现资源去重(1 小时处理 10 万份文件,去重率 41.7%)、Flink 实现实时推荐(响应 800ms)、Neo4j 构建知识图谱(关联查询 150ms),将资源查找时间从 2 小时压到 28 秒,学生知识点掌握率提升 28%。附完整可部署代码(含 Maven 配置、核心配置文件)、4 个实战踩坑经验,助力教
RabbitMQ - 第一个 Hello World 程序:SpringBoot 版极简集成
本文介绍了如何使用Spring Boot快速集成RabbitMQ实现一个简单的"Hello World"消息队列程序。主要内容包括: RabbitMQ核心概念:生产者、消费者、队列、交换机和路由键 环境准备:通过Docker快速部署RabbitMQ服务 项目创建:使用Spring Initializr添加Spring Web和AMQP依赖 配置连接:在application.yml中设置RabbitMQ连接参数 消息发送:利用RabbitTemplate的convertAndSend方法
计算机毕业设计Python+PySpark+Hadoop高考推荐系统 高考可视化 大数据毕业设计(源码+LW文档+PPT+详细讲解)
本文介绍了基于Python+PySpark+Hadoop的高考志愿推荐系统设计方案。系统通过分析考生分数、兴趣和院校历史数据,采用分布式架构实现精准志愿推荐。技术栈包括Hadoop存储数据、PySpark进行分布式计算、Python开发前端交互。核心功能包含分数标准化、院校特征提取、分层推荐策略(冲稳保)及录取概率预测模型。项目分阶段完成数据采集、预处理、算法实现、系统集成等任务,预期实现85%以上的推荐准确率。系统可解决传统填报方式信息过载、匹配效率低等问题,为考生提供个性化志愿推荐服务。





