基于 Java 的消息队列选型年度总结:RabbitMQ、RocketMQ、Kafka 实战对比
消息队列技术选型分析:RabbitMQ、RocketMQ与Kafka对比 本文从实战角度对三大主流消息队列进行多维度对比分析。RabbitMQ基于AMQP协议,提供灵活路由和图形化管理,适合中小型系统;RocketMQ由阿里开发,具备金融级高可靠性和高吞吐特性;Kafka则专为高吞吐流处理设计,与大数据生态深度集成。三者各具特色:RabbitMQ路由灵活但吞吐有限,RocketMQ在事务消息和顺序消息方面表现优异,Kafka则在大规模数据处理上优势明显。文章通过架构图、性能指标表和典型场景分析,为开发者提供
Java 大视界 -- Java 大数据在智能家居能源消耗趋势预测与节能策略优化中的应用(433)
本文探讨了Java大数据技术在智能家居能源管理中的应用。针对当前智能家居存在的"数据孤岛、预测缺失、策略僵化"三大痛点,提出了一套基于Java生态的能源消耗预测与优化方案。通过Spring Cloud整合多协议设备数据,采用Spark MLlib构建能耗预测模型(准确率≥89%),结合Drools规则引擎实现个性化节能策略。经北京某智慧小区300户家庭6个月验证,整体能耗下降20.9%,单户年均节省电费860元。文章详细介绍了技术架构设计、核心场景实现及优化技巧,包含可直接部署的代码方案
Registry Usage (RU) 学习笔记(15.5):注册表内存占用体检与 Hive 体量分析
本文介绍了 Sysinternals 工具集中的 Registry Usage (RU) 工具,用于分析 Windows 注册表的内存占用和体量分布。主要内容包括: RU 的基本功能:按 hive 或路径统计注册表体积、内存占用、键值数量 关键指标解读:Total KB(持久存储大小)、Committed KB(内存占用)、Keys/Values 数量 典型使用场景:识别膨胀的注册表 hive,定位问题路径,对比基线数据 实践建议:提供完整的排查流程和常用命令集,强调分析而非直接删除 组合工具推荐:配合 R
spring cloud微服务实战:Eureka+Zuul+Feign/Ribbon+Hystrix Turbine+SpringConfig+sleuth+zipkin
spring cloud微服务实战:Eureka+Zuul+Feign/Ribbon+Hystrix Turbine+SpringConfig+sleuth+zipkin Spring Cloud并没有重复制造轮子,它只是将目前各家 公司开发的比较成熟、经得起实际考验的服务框架组合起来,通过Spring Boot风格进行再封装屏蔽掉 了复杂的配置和实现原理,最终给开发者留出了一套简单易懂、易部署和易维护的分布式系统开发工具 包。




