【自动控制理论】状态空间模型、传递函数、差分方程的相互转换

文章介绍了如何将已知的连续状态空间模型转换为离散状态空间,并通过差分方程来表示。讨论了s-function的采样时间设置,包括不同选项的含义和应用。此外,还涉及滑模控制器在轨迹跟踪中的应用,通过建立误差模型来调整系统状态以实现精确跟踪。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

转换关系

离散化->差分方程
  离散化后求差分方程时分子分母同除以z的最高次方,使z的次数为负,最后把y(k)提到等式的左边,即得到差分方程的形式

已知连续状态空间求离散状态空间

{ x ˙ = A x + B u y = C x + D u \begin{cases} \boldsymbol{\dot{x}}=\boldsymbol{Ax}+\boldsymbol{B}u\\ \boldsymbol{{y}}=\boldsymbol{Cx}+\boldsymbol{D}u\\ \end{cases} {x˙=Ax+Buy=Cx+Du转换为 { x ( t + 1 ) − x ( t ) Δ t = A x ( t ) + B u ( t ) y ( t + 1 ) = C x ( t ) + D u ( t ) \begin{cases} \frac{\boldsymbol{x}\left( t+1 \right) -\boldsymbol{x}\left( t \right)}{\varDelta t}=\boldsymbol{Ax}\left( t \right) +\boldsymbol{B}u\left( t \right)\\ \boldsymbol{y}\left( t+1 \right) =\boldsymbol{Cx}\left( t \right) +\boldsymbol{D}u\left( t \right)\\ \end{cases} {Δtx(t+1)x(t)=Ax(t)+Bu(t)y(t+1)=Cx(t)+Du(t)

归纳

  1. 已知连续传函,可走离散传函,再到差分方程。
  2. 已知连续状态空间,可直接转化为离散状态空间。

s-function采样时间设置

采样时间ts含义
[0 0]默认设置,连续采样时间,不一定和simulink设置的固定步长保持一致
[0 1]固定步长,s函数内部时间节点,和simulink设置的固定步长保持一致
[-1 0]继承S-function输入信号的采样时间
[0.5 0.1]离散采样时间,从0.1s开始每0.5s采样一次

参考文章:离散系统的状态空间模型


滑模控制器跟踪轨迹输出

e1 = x1 - r
e2 = x2 - dr

  • 根据以上关系式求对应的误差模型,此时系统状态为e1、e2,原系统的x替换为e+r,然后再输出跟踪轨迹。详见我的笔记本电脑D:\matlab_course\滑模控制小课堂\SMCctrl_1&SMCplant_1目录下代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值