深度学习可视化工具:Netron

本文介绍Netron这一强大的神经网络模型可视化工具,支持多种格式如ONNX、TensorFlow Lite等,并详细讲解如何通过添加特征图维度及显示BN层来优化模型展示效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

Netron是一个用于神经网络、深度学习和机器学习模型的可视化工具。

Netron支持 ONNX、TensorFlow Lite、Caffe、Keras、Darknet、PaddlePaddle、ncnn、MNN、Core ML、RKNN、MXNet、MindSpore Lite、TNN、Barracuda、Tengine、CNTK、TensorFlow.js、Caffe2 和 UFF。

它还实验性支持PyTorch、TensorFlow、TorchScript、OpenVINO、Torch、Vitis AI、kmodel、Arm NN、BigDL、Chainer、Deeplearning4j、MediaPipe、ML.NET 和 scikit-learn。

安装

snap install netron

使用方式

命令行输入 netron 即可打开界面,如下所示:
在这里插入图片描述比如使用下面代码生成的一个模型:

import torchvision.models as models
import torch

# 定义样例数据+网络
data = torch.randn(2, 3, 256, 256)
net = models.resnet34()

# 导出为onnx格式
torch.onnx.export(
    net,
    data,
    'model.onnx',
    export_params=True,
    opset_version=8,
)

在这里插入图片描述

1. 添加特征图维度

如果仔细看下结果,可以发现图中没有特征图的维度,只有输入数据的维度 ( 2 , 3 , 256 , 256 ) (2, 3, 256, 256) (2,3,256,256)。在 Netron 中,如果想看到特征图的维度,需要在导出为 ONNX 的时候,同时加上特征图维度信息。比如像下面这段代码:

import torchvision.models as models
import torch

import onnx
import onnx.utils
import onnx.version_converter


# 定义数据+网络
data = torch.randn(2, 3, 256, 256)
net = models.resnet34()

# 导出
torch.onnx.export(
    net,
    data,
    'model.onnx',
    export_params=True,
    opset_version=8,
)

# 增加维度信息
model_file = 'model.onnx'
onnx_model = onnx.load(model_file)
onnx.save(onnx.shape_inference.infer_shapes(onnx_model), model_file)

相比之前代码,多了一个增加维度信息的步骤。此时可视化图中就能完整显示所有特征图的维度了。
在这里插入图片描述

2. 显示 BN 层

可以看见上图中并没有显示 BN 层。如果想将 Conv 和 BN 分开显示,可以在 torch.onnx.export 时添加参数 training=2,否则 ONNX 默认将 BN 层融合到 Conv 层。

import torchvision.models as models
import torch

import onnx
import onnx.utils
import onnx.version_converter


# 定义数据+网络
data = torch.randn(2, 3, 256, 256)
net = models.resnet34()

# 导出
torch.onnx.export(
    net,
    data,
    'model.onnx',
    export_params=True,
    opset_version=8,
    training=2, //---->>>>>>改动处
)

# 增加维度信息
model_file = 'model.onnx'
onnx_model = onnx.load(model_file)
onnx.save(onnx.shape_inference.infer_shapes(onnx_model), model_file)

再次查看网络结构:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

泠山

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值