多传感器融合定位九-基于滤波的融合方法Ⅰ其一

Reference:

  1. 深蓝学院-多传感器融合
  2. 多传感器融合定位理论基础

文章跳转:

  1. 多传感器融合定位一-3D激光里程计其一:ICP
  2. 多传感器融合定位二-3D激光里程计其二:NDT
  3. 多传感器融合定位三-3D激光里程计其三:点云畸变补偿
  4. 多传感器融合定位四-3D激光里程计其四:点云线面特征提取
  5. 多传感器融合定位五-点云地图构建及定位
  6. 多传感器融合定位六-惯性导航原理及误差分析
  7. 多传感器融合定位七-惯性导航解算及误差分析其一
  8. 多传感器融合定位八-惯性导航解算及误差分析其二
  9. 多传感器融合定位九-基于滤波的融合方法Ⅰ其一
  10. 多传感器融合定位十-基于滤波的融合方法Ⅰ其二
  11. 多传感器融合定位十一-基于滤波的融合方法Ⅱ
  12. 多传感器融合定位十二-基于图优化的建图方法其一
  13. 多传感器融合定位十三-基于图优化的建图方法其二
  14. 多传感器融合定位十四-基于图优化的定位方法
  15. 多传感器融合定位十五-多传感器时空标定(综述)

1. 滤波器的作用

滤波器的本质:结合预测观测,得到最“精确”的后验值。
实际中,预测与观测均从传感器而来,因此滤波器的作用便是结合各传感器得到一个最好的融合结果。

在这里插入图片描述

  1. 实际中预测往往从 IMU、编码器等传感器递推而来;
  2. 观测往往从 GPS、雷达、相机等传感器而来;
  3. 后验为融合后的结果,即定位模块的输出。

2. 概率基础知识

2.1 概率、概率密度

在这里插入图片描述
上图中, p ( x ) p(x) p(x) x x x 在区间 [ a [a [a, b ] b] b] 上的概率密度,它表示的是随机变量在区间的分布情况
Pr ⁡ \operatorname{Pr} Pr 代表的是 x x x 在区间 [ c , d ] [c, d] [c,d] 上的概率,它是概率密度的积分
Pr ⁡ ( c ≤ x ≤ d ) = ∫ c d p ( x ) d x \operatorname{Pr}(c \leq x \leq d)=\int_c^d p(x) d x Pr(cxd)=cdp(x)dx我们平时所说 “高斯分布”、“非高斯分布” 均是指它的概率密度

2.2 联合概率密度

x ∈ [ a , b ] x \in[a, b] x[a,b] y ∈ [ r , s ] y \in[r, s] y[r,s]联合概率密度函数可以表示为 p ( x , y ) p(x, y) p(x,y),其积分表示 x x x y y y 同时处在某个区间的概率,满足下式:
∫ a b ∫ r s p ( x , y ) d y d x = 1 \int_a^b \int_r^s p(x, y) d y d x=1 abrsp(x,y)dydx=1特别地,当 x x x y y y 统计独立的时候,有: p ( x , y ) = p ( x ) p ( y ) p(x, y)=p(x) p(y) p(x,y)=p(x)p(y)

2.3 条件概率密度

x x x 关于 y y y条件概率密度函数可以表示为:
p ( x ∣ y ) p(x \mid y) p(xy)其含义是, y ∈ [ r , s ] y \in[r, s] y[r,s] 的前提下, x ∈ [ a , b ] x \in[a, b] x[a,b] 的概率分布,并且满足下式:
p ( x ) = ∫ r s p ( x ∣ y ) p ( y ) d y p(x)=\int_r^s p(x \mid y) p(y) d y p(x)=rsp(xy)p(y)dy特别地,当 x x x y y y 统计独立的时候,有:
p ( x ∣ y ) = p ( x ) p(x \mid y)=p(x) p(xy)=p(x)

2.4 贝叶斯公式

联合概率密度分解成条件概率密度( p ( x ∣ y ) p(x \mid y) p(xy))和边缘概率密度( p ( y ) p(y) p(y))的乘积(左边: x , y x, y x,y同时满足这个条件;右边:在 y y y 满足条件的情况下, x x x 也满足这个条件。这两者是等价的。),即:
p ( x , y ) = p ( x ∣ y ) p ( y ) = p ( y ∣ x ) p ( x ) p(x, y)=p(x \mid y) p(y)=p(y \mid x) p(x) p(x,y)=p(xy)p(y)=p(yx)p(x)重新整理,即可得贝叶斯公式
p ( x ∣ y ) = p ( y ∣ x ) p ( x ) p ( y ) p(x \mid y)=\frac{p(y \mid x) p(x)}{p(y)} p(xy)=p(y)p(yx)p(x)

2.5 贝叶斯推断

贝叶斯推断可以理解为贝叶斯公式的运用,它是指,如果已知先验概率密度函数 p ( x ) p(x) p(x),以及传感器模型 p ( y ∣ x ) p(y \mid x) p(yx),那么就可以根据贝叶斯公式推断出后验概率密度
p ( x ∣ y ) = p ( y ∣ x ) p ( x ) ∫ p ( y ∣ x ) p ( x ) d x p(x \mid y)=\frac{p(y \mid x) p(x)}{\int p(y \mid x) p(x) \mathrm{d} x} p(xy)=p(yx)p(x)dxp(yx)p(x)实际中,贝叶斯推断有时也称为贝叶斯估计

2.6 高斯概率密度函数

一维情况下,高斯概率密度函数表示为:
p ( x ∣ μ , σ 2 ) = 1 2 π σ 2 exp ⁡ ( − 1 2 ( x − μ ) 2 σ 2 ) p\left(x \mid \mu, \sigma^2\right)=\frac{1}{\sqrt{2 \pi \sigma^2}} \exp \left(-\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2}\right) p(xμ,σ2)=2πσ2 1exp(21σ2(xμ)2)其中 μ \mu μ均值 σ 2 \sigma^2 σ2方差
多维情况下,高斯概率密度函数表示为:
p ( x ∣ μ , Σ ) = 1 ( 2 π ) N det ⁡ Σ exp ⁡ ( − 1 2 ( x − μ ) T Σ − 1 ( x − μ ) ) p(\boldsymbol{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{\sqrt{(2 \pi)^N \operatorname{det} \boldsymbol{\Sigma}}} \exp \left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right) p(xμ,Σ)=(2π)NdetΣ 1exp(21(xμ)TΣ1(xμ))其中均值为 μ \boldsymbol{\mu} μ,方差为 Σ \boldsymbol{\Sigma} Σ
一般把高斯分布写成 x ∼ N ( μ , Σ ) \boldsymbol{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) xN(μ,Σ)

2.7 联合高斯概率密度函数

若有高斯分布:
p ( x ) = N ( μ x , Σ x x ) p ( y ) = N ( μ y , Σ y y ) \begin{aligned} & p(\boldsymbol{x})=\mathcal{N}\left(\boldsymbol{\mu}_x, \boldsymbol{\Sigma}_{x x}\right) \\ & p(\boldsymbol{y})=\mathcal{N}\left(\boldsymbol{\mu}_y, \boldsymbol{\Sigma}_{y y}\right) \end{aligned} p(x)=N(μx,Σxx)p(y)=N(μy,Σyy)则它们的联合概率密度函数可以表示为:
p ( x , y ) = N ( [ μ x μ y ] , [ Σ x x Σ x y Σ y x Σ y y ] ) p(\boldsymbol{x}, \boldsymbol{y})=\mathcal{N}\left(\left[\begin{array}{l} \boldsymbol{\mu}_x \\ \boldsymbol{\mu}_y \end{array}\right],\left[\begin{array}{ll} \boldsymbol{\Sigma}_{x x} & \boldsymbol{\Sigma}_{x y} \\ \boldsymbol{\Sigma}_{y x} & \boldsymbol{\Sigma}_{y y} \end{array}\right]\right) p(x,y)=N([μxμy],[ΣxxΣyxΣxyΣyy])由于联合概率密度满足下式:
p ( x , y ) = p ( x ∣ y ) p ( y ) p(\boldsymbol{x}, \boldsymbol{y})=p(\boldsymbol{x} \mid \boldsymbol{y}) p(\boldsymbol{y}) p(x,y)=p(xy)p(y)该式在高斯分布的前提下可以重新分解。
由于高斯分布中指数项包含方差的求逆( Σ \Sigma Σ 求逆,这个是不太好展开的),而此处联合概率的方差是一个高维矩阵,对它求逆的简洁办法是运用舒尔补(对于求逆来说,是个非常有利的工具)。

舒尔补主要目的把矩阵分解成上三角矩阵、对角阵、 下三角矩阵乘积的形式,方便运算,即(舒尔补 的具体含义:从下面一个矩阵拆成三个):

[ A B C D ] = [ I B D − 1 0 I ] [ Δ D 0 0 D ] [ I 0 D − 1 C I ] \begin{aligned} & {\left[\begin{array}{ll} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{array}\right] } \\ = & {\left[\begin{array}{cc} \mathbf{I} & \mathbf{B D}^{-1} \\ \mathbf{0} & \mathbf{I} \end{array}\right]\left[\begin{array}{cc} \Delta \mathbf{D} & \mathbf{0} \\ \mathbf{0} & \mathbf{D} \end{array}\right]\left[\begin{array}{cc} \mathbf{I} & \mathbf{0} \\ \mathbf{D}^{-1} \mathbf{C} & \mathbf{I} \end{array}\right] } \end{aligned} =[ACBD][I0BD1I][ΔD00D][ID1C0I]其中 Δ D = A − B D − 1 C \Delta \mathrm{D}=\mathbf{A}-\mathbf{BD}^{-1} \mathbf{C} ΔD=ABD1C 称为矩阵 D \mathrm{D} D 关于原矩阵的舒尔补
此时有(好处就在于下面求逆的时候,公式中 对角阵的逆、上三角及下三角的逆 都是比较好求的,这样上面方差矩阵的逆就更好求出来了):
[ A B C D ] − 1 = [ I 0 − D − 1 C I ] [ Δ D − 1 0 0 D − 1 ] [ I − B D − 1 0 I ] \begin{aligned} & {\left[\begin{array}{ll} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{array}\right]^{-1}=} \\ & {\left[\begin{array}{cc} \mathrm{I} & 0 \\ -\mathbf{D}^{-1} \mathbf{C} & \mathrm{I} \end{array}\right]\left[\begin{array}{cc} \Delta \mathbf{D}^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{D}^{-1} \end{array}\right]\left[\begin{array}{cc} \mathbf{I} & -\mathbf{BD}^{-1} \\ 0 & \mathbf{I} \end{array}\right]} \end{aligned} [ACBD]1=[ID1C0I][ΔD100D1][I0BD1I]利用舒尔补,联合分布的方差矩阵可以写为:
[ Σ x x Σ x y Σ y x Σ y y ] = [ 1 Σ x y Σ y y − 1 0 1 ] [ Σ x x − Σ x y Σ y y − 1 Σ y x 0 0 Σ y y ] [ 1 0 Σ y y − 1 Σ y x 1 ] \left[\begin{array}{cc} \boldsymbol{\Sigma}_{x x} & \boldsymbol{\Sigma}_{x y} \\ \boldsymbol{\Sigma}_{y x} & \boldsymbol{\Sigma}_{y y} \end{array}\right]=\left[\begin{array}{cc} \mathbf{1} & \boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y y}^{-1} \\ \mathbf{0} & \mathbf{1} \end{array}\right]\left[\begin{array}{cc} \boldsymbol{\Sigma}_{x x}-\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y y}^{-1} \boldsymbol{\Sigma}_{y x} & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\Sigma}_{y y} \end{array}\right]\left[\begin{array}{cc} \mathbf{1} & \mathbf{0} \\ \boldsymbol{\Sigma}_{y y}^{-1} \boldsymbol{\Sigma}_{y x} & \mathbf{1} \end{array}\right] [ΣxxΣyxΣxyΣyy]=[10ΣxyΣyy11][ΣxxΣxyΣyy1Σyx00Σyy][1Σyy1Σyx01]它的逆矩阵为:
[ Σ x x Σ x y Σ y x Σ y y ] − 1 = [ 1 0 − Σ y y − 1 Σ y x 1 ] [ ( Σ x x − Σ x y Σ y y − 1 Σ y x ) − 1 0 0 Σ y y − 1 ] [ 1 − Σ x y Σ y y − 1 0 1 ] \left[\begin{array}{cc} \boldsymbol{\Sigma}_{x x} & \boldsymbol{\Sigma}_{x y} \\ \boldsymbol{\Sigma}_{y x} & \boldsymbol{\Sigma}_{y y} \end{array}\right]^{-1}=\left[\begin{array}{cc} \mathbf{1} & \mathbf{0} \\ -\boldsymbol{\Sigma}_{y y}^{-1} \boldsymbol{\Sigma}_{y x} & \mathbf{1} \end{array}\right]\left[\begin{array}{cc} \left(\boldsymbol{\Sigma}_{x x}-\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y y}^{-1} \boldsymbol{\Sigma}_{y x}\right)^{-1} & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\Sigma}_{y y}^{-1} \end{array}\right]\left[\begin{array}{cc} \mathbf{1} & -\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y y}^{-1} \\ \mathbf{0} & \mathbf{1} \end{array}\right] [ΣxxΣyxΣxyΣyy]1=[1Σyy1Σyx01][(ΣxxΣxyΣyy1Σyx)100Σyy1][10ΣxyΣyy11]联合分布 p ( x , y ) p(\boldsymbol{x}, \boldsymbol{y}) p(x,y) 仍为高斯分布,
p ( x , y ) = N ( [ μ x μ y ] , [ Σ x x Σ x y Σ y x Σ y y ] ) p(\boldsymbol{x}, \boldsymbol{y})=\mathcal{N}\left(\left[\begin{array}{l} \boldsymbol{\mu}_x \\ \boldsymbol{\mu}_y \end{array}\right],\left[\begin{array}{cc} \boldsymbol{\Sigma}_{x x} & \boldsymbol{\Sigma}_{x y} \\ \boldsymbol{\Sigma}_{y x} & \boldsymbol{\Sigma}_{y y} \end{array}\right]\right) p(x,y)=N([μxμy],[ΣxxΣyxΣxyΣyy])它的指数部分的二次项包含如下内容(注意说的是指数部分)
( [ x y ] − [ μ x μ y ] ) T [ Σ x x Σ x y Σ y x Σ y y ] − 1 ( [ x y ] − [ μ x μ y ] ) = ( [ x y ] − [ μ x μ y ] ) T [ 1 0 − Σ y y − 1 Σ y x 1 ] [ ( Σ x x − Σ x y Σ y y − 1 Σ y x ) − 1 0 0 Σ y y − 1 ] [ 1 − Σ x y Σ y y − 1 0 1 ] ( [ x y ] − [ μ x μ y ] ) = ( x − μ x − Σ x y Σ y y − 1 ( y − μ y ) ) T ( Σ x x − Σ x y Σ y y − 1 Σ y x ) − 1 ( x − μ x − Σ x y Σ y y − 1 ( y − μ y ) ) + ( y − μ y ) T Σ y y − 1 ( y − μ y ) \begin{aligned} & \left(\left[\begin{array}{l} \boldsymbol{x} \\ \boldsymbol{y} \end{array}\right]-\left[\begin{array}{l} \boldsymbol{\mu}_x \\ \boldsymbol{\mu}_y \end{array}\right]\right)^{\mathrm{T}}\left[\begin{array}{cc} \boldsymbol{\Sigma}_{x x} & \boldsymbol{\Sigma}_{x y} \\ \boldsymbol{\Sigma}_{y x} & \boldsymbol{\Sigma}_{y y} \end{array}\right]^{-1}\left(\left[\begin{array}{l} \boldsymbol{x} \\ \boldsymbol{y} \end{array}\right]-\left[\begin{array}{l} \boldsymbol{\mu}_x \\ \boldsymbol{\mu}_y \end{array}\right]\right) \\ = & \left(\left[\begin{array}{l} \boldsymbol{x} \\ \boldsymbol{y} \end{array}\right]-\left[\begin{array}{l} \boldsymbol{\mu}_x \\ \boldsymbol{\mu}_y \end{array}\right]\right)^{\mathrm{T}}\left[\begin{array}{cc} 1 & 0 \\ -\boldsymbol{\Sigma}_{y y}^{-1} \boldsymbol{\Sigma}_{y x} & 1 \end{array}\right]\left[\begin{array}{cc} \left(\boldsymbol{\Sigma}_{x x}-\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y y}^{-1} \boldsymbol{\Sigma}_{y x}\right)^{-1} & \mathbf{0} \\ 0 & \boldsymbol{\Sigma}_{y y}^{-1} \end{array}\right]\left[\begin{array}{cc} \mathbf{1} & -\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y y}^{-1} \\ \mathbf{0} & 1 \end{array}\right]\left(\left[\begin{array}{l} \boldsymbol{x} \\ \boldsymbol{y} \end{array}\right]-\left[\begin{array}{l} \boldsymbol{\mu}_x \\ \boldsymbol{\mu}_y \end{array}\right]\right) \\ = & \left(\boldsymbol{x}-\boldsymbol{\mu}_x-\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y y}^{-1}\left(\boldsymbol{y}-\boldsymbol{\mu}_y\right)\right)^{\mathrm{T}}\left(\boldsymbol{\Sigma}_{x x}-\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y y}^{-1} \boldsymbol{\Sigma}_{y x}\right)^{-1}\left(\boldsymbol{x}-\boldsymbol{\mu}_x-\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y y}^{-1}\left(\boldsymbol{y}-\boldsymbol{\mu}_y\right)\right) \\ & +\left(\boldsymbol{y}-\boldsymbol{\mu}_y\right)^{\mathrm{T}} \boldsymbol{\Sigma}_{y y}^{-1}\left(\boldsymbol{y}-\boldsymbol{\mu}_y\right) \end{aligned} ==([xy][μxμy])T[ΣxxΣyxΣxyΣyy]1([xy][μxμy])([xy][μxμy])T[1Σyy1Σyx01][(ΣxxΣxyΣyy1Σyx)100Σyy1][10ΣxyΣyy11]([xy][μxμy])(xμxΣxyΣyy1(yμy))T(ΣxxΣxyΣyy1Σyx)1(xμxΣxyΣyy1(yμy))+(yμy)TΣyy1(yμy)最后得到两个二次项的和,由于同底数幂相乘后,底数不变,指数相加,且 p ( y ) = N ( μ y , Σ y y ) p(\boldsymbol{y})=\mathcal{N}\left(\boldsymbol{\mu}_y, \boldsymbol{\Sigma}_{y y}\right) p(y)=N(μy,Σyy)(这时就可以求 p ( x ∣ y ) = p ( x , y ) p ( y ) p(\boldsymbol{x} \mid \boldsymbol{y})=\frac{p(\boldsymbol{x} , \boldsymbol{y})}{p(y)} p(xy)=p(y)p(x,y),正好消去指数项 ( y − μ y ) T Σ y y − 1 ( y − μ y ) \left(\boldsymbol{y}-\boldsymbol{\mu}_y\right)^{\mathrm{T}} \boldsymbol{\Sigma}_{y y}^{-1}\left(\boldsymbol{y}-\boldsymbol{\mu}_y\right) (yμy)TΣyy1(yμy))
因此有 p ( x ∣ y ) = N ( μ x + Σ x y Σ y y − 1 ( y − μ y ) , Σ x x − Σ x y Σ y y − 1 Σ y x ) p(\boldsymbol{x} \mid \boldsymbol{y})=\mathcal{N}\left(\boldsymbol{\mu}_x+\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y y}^{-1}\left(\boldsymbol{y}-\boldsymbol{\mu}_y\right), \boldsymbol{\Sigma}_{x x}-\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y y}^{-1} \boldsymbol{\Sigma}_{y x}\right) p(xy)=N(μx+ΣxyΣyy1(yμy),ΣxxΣxyΣyy1Σyx)

2.8 高斯随机变量的线性分布

在上面的例子中,若已知 x \boldsymbol{x} x y \boldsymbol{y} y 之间有如下关系
y = G x + n \boldsymbol{y}=\boldsymbol{G} \boldsymbol{x}+\boldsymbol{n} y=Gx+n其中 G G G 是一个常量矩阵, n = N ( 0 , R ) n=\mathcal{N}(0, R) n=N(0,R)零均值白噪声, 在实际中指的是观测噪声。则 x x x y y y 的均值和方差之间必然存在联系,其联系可通过以下推导获得。
均值( E [ n ] E[\boldsymbol{n}] E[n] 为零均值白噪声,所以 E [ n ] = 0 E[\boldsymbol{n}]=0 E[n]=0):
μ y = E [ y ] = E [ G x + n ] = G E [ x ] + E [ n ] = G μ x \begin{aligned} \boldsymbol{\mu}_y & =E[\boldsymbol{y}] \\ & =E[\boldsymbol{G} \boldsymbol{x}+\boldsymbol{n}] \\ & =\boldsymbol{G} E[\boldsymbol{x}]+E[\boldsymbol{n}] \\ & =\boldsymbol{G} \boldsymbol{\mu}_x \end{aligned} μy=E[y]=E[Gx+n]=GE[x]+E[n]=Gμx方差:
Σ y y = Σ ( G x ) + Σ ( n ) = E [ ( G x − μ y ) ( G x − μ y ) T ] + R = G E [ ( x − μ x ) ( x − μ x ) T ] G T + R = G Σ x x G T + R \begin{aligned} \boldsymbol{\Sigma}_{y y} & =\boldsymbol{\Sigma}(\boldsymbol{G} \boldsymbol{x})+\boldsymbol{\Sigma}(\boldsymbol{n}) \\ & =E\left[\left(\boldsymbol{G} \boldsymbol{x}-\boldsymbol{\mu}_y\right)\left(\boldsymbol{G} \boldsymbol{x}-\boldsymbol{\mu}_y\right)^{\mathrm{T}}\right]+\boldsymbol{R} \\ & =\boldsymbol{G} E\left[\left(\boldsymbol{x}-\boldsymbol{\mu}_x\right)\left(\boldsymbol{x}-\boldsymbol{\mu}_x\right)^{\mathrm{T}}\right] \boldsymbol{G}^{\mathrm{T}}+\boldsymbol{R} \\ & =\boldsymbol{G} \boldsymbol{\Sigma}_{x x} \boldsymbol{G}^{\mathrm{T}}+\boldsymbol{R} \end{aligned} Σyy=Σ(Gx)+Σ(n)=E[(Gxμy)(Gxμy)T]+R=GE[(xμx)(xμx)T]GT+R=GΣxxGT+R方差的交叉项:
Σ x y = E [ ( x − μ x ) ( y − μ y ) T ] = E [ ( x − μ x ) ( G x − G μ x + n ) T ] = E [ ( x − μ x ) ( G x − G μ x ) T + ( x − μ x ) n T ] = Σ x x G T + E [ ( x − μ x ) n T ] = Σ x x G T \begin{aligned} \boldsymbol{\Sigma}_{x y} & =E\left[\left(\boldsymbol{x}-\boldsymbol{\mu}_x\right)\left(\boldsymbol{y}-\boldsymbol{\mu}_y\right)^{\mathrm{T}}\right] \\ & =E\left[\left(\boldsymbol{x}-\boldsymbol{\mu}_x\right)\left(\boldsymbol{G} \boldsymbol{x}-\boldsymbol{G} \boldsymbol{\mu}_x+\boldsymbol{n}\right)^{\mathrm{T}}\right] \\ & =E\left[\left(\boldsymbol{x}-\boldsymbol{\mu}_x\right)\left(\boldsymbol{G} \boldsymbol{x}-\boldsymbol{G} \boldsymbol{\mu}_x\right)^{\mathrm{T}}+\left(\boldsymbol{x}-\boldsymbol{\mu}_x\right) \boldsymbol{n}^{\mathrm{T}}\right] \\ & =\boldsymbol{\Sigma}_{x x} \boldsymbol{G}^{\mathrm{T}}+E\left[\left(\boldsymbol{x}-\boldsymbol{\mu}_x\right) \boldsymbol{n}^{\mathrm{T}}\right] \\ & =\boldsymbol{\Sigma}_{x x} \boldsymbol{G}^{\mathrm{T}} \end{aligned} Σxy=E[(xμx)(yμy)T]=E[(xμx)(GxGμx+n)T]=E[(xμx)(GxGμx)T+(xμx)nT]=ΣxxGT+E[(xμx)nT]=ΣxxGT同理可得 Σ y x = Σ x y T = G Σ x x \boldsymbol{\Sigma}_{y x}=\boldsymbol{\Sigma}_{x y}^{\mathrm{T}}=\boldsymbol{G} \boldsymbol{\Sigma}_{x x} Σyx=ΣxyT=GΣxx(互为转置)

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

泠山

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值