控制领域,说白了还是在机械大领域下。
大部分精力其实花在力学、机械、数学上面。 软硬件都是辅助,用到的都不会太深。
这也就是为什么,德国机器人控制都是机械学院在做。因为它本质上还是机械大类,只不过是赋予了机械运动的能力。用什么赋能?用的是软件和硬件。你想想,学的软硬件都只在做一件事,就是给机械运动赋能,它能学深入吗?
感知领域,其实是信息与计算机的融合,它是为了赋予感知能力。所以跟机器人感知、或者决策相关的都是在信息学院下老师在做。从用途和特性角度,感觉上来说,这个方向其实挺好的。
再仔细想想,其实控制用到的计算机,mcu几乎已经足够了。经过一大推力学分析和数学推导之后,最后的算法形式往往很简单。
自己用到Linux和高级语言,是因为什么?是因为OpenCV,因为ROS,因为网络识别。几乎一切都是感知相关。
当然,最开始的兴趣便是起源于机器运转起来的那一刻,或者是引擎轰鸣时的声音。
我觉得现在工业领域(或者说硬件领域)知识体系里缺的是 力学的理解与物理直觉的建立、 机械原理与结构设计、 硬件原理与设计。 这些知识的消化和能力的培养,其实成本都比感知或者软件要大,这也是它们的特点。其实如果能补齐这些缺的能力,可能思想会是另外一种高度和看法。感觉自己,对单纯的控制理论,其实并不感兴趣。感兴趣的是机器人、车 运动起来的样子。如果说补齐以上短板后,对于理论研究来说,其实控制和感知并不相差太多,都是数学的东西。
当然,软件领域估计也有很多知识空白,只是现在搞的少,没察觉这方面知识很不够用。