肌肉骨骼模型
骨骼的刚体动力学模型
首先基于刚体动力学对于人体骨骼系统进行建模。首先确定系统的广义坐标 q q q,对于图中所示的二维模型为例,广义坐标包含躯干的水平、数值方向位移和姿态角,以及每条腿三个关节角,一共 3 + 2 ∗ 3 = 9 3+2*3=9 3+2∗3=9个自由度。之后通过这些广义变量和广义变量的导数,表示出系统的动能和势能,并构造拉格朗日函数:
L = T − V L=T-V L=T−V
考虑骨骼系统仅收到地反力和肌肉力的作用,通过拉格朗日方程得到系统的动力学模型:
d d t ( ∂ L ∂ q ˙ j ) − ∂ L ∂ q j = τ c o n t a c t j + τ m u s c l e j \frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{\partial L}{\partial \dot{q}_{j}}\right)-\frac{\partial L}{\partial q_{j}}=\tau^{j}_{contact}+\tau^{j}_{muscle} dtd(∂q˙j∂L)−∂qj∂L=τcontactj+τmusclej
M ( q ) ⋅ q ¨ + B ( q , q ˙ ) = J ( q ) T F c o n t a c t + R ( q ) F m u s c l e \mathbf{M}(\mathbf{q}) \cdot \ddot{\mathbf{q}}+\mathbf{B}(\mathbf{q}, \dot{\mathbf{q}})=\mathbf{J(q)}^T\mathbf{F}_{contact}+\mathbf{R(q)}\mathbf{F}_{muscle} M(q)⋅q¨+B(q,q˙)=J(q)TFcontact+R(q)Fmuscle
其中 M ( q ) \mathbf{M(q)} M(q)为质量矩阵, B ( q , q ˙ ) \mathbf{B}(\mathbf{q}, \dot{\mathbf{q}}) B(q,q˙)包含重力、离心力和科氏力, J ( q ) \mathbf{J(q)} J(q)表示雅克比矩阵,将地反力转化为对每个广义坐标的等效力矩, R ( q ) \mathbf{R(q)} R(