单细胞各类细胞常用marker基因

T细胞:CD3D,CD3E,CD4,CD8A,CD8B
还有注意γδT细胞

Treg:CD4,FOXP3

B细胞:CD79A,CD79B

中性粒细胞:FCGR3B,CXCR2

DC细胞:
cDC1(human:XCR1+ CLEC9A+ CD141+):交叉递呈抗原给CD8+T细胞,
cDC2(CD11b+ SIRPα+ CD1c+):激活CD4+ T 细胞和CD8+T细胞。
浆细胞样DC (plasmacytoid DC,pDC)(CD123+ CLEC4C+.)

NK细胞:CD56(NCAM1),CD16(FCGR3A)
人类NK细胞表面标志主要以CD16、CD56来认定。目前多以CD3-、CD16+、CD56+作为NK细胞典型标志。有些文献使用 FGFBP2, FCG3RA, CX3CR1。

巨噬细胞:CD68/CD163等。M1和M2型不太好分,更多marker可以参照赛默飞网站写的说明。https://www.thermofisher.cn/cn/zh/home/life-science/cell-analysis/cell-analysis-learning-center/immunology-at-work/macrophage-cell-overview.html

内皮细胞:VWF,FCN3,DNASE1L3

肥大细胞:TPSAB1 ,TPSB2,CPA3,KIT

免疫细胞:PTPRC (CD45)

上皮细胞:EPCAM

成纤维细胞:FGF7, MME, DCN,LUM, GSN,DCN,ACTA2,FAP,PDGFRA

肌成纤维: MMP11、POSTN、CTHRC1、COL1A1、ACTA2 和 COL3A1
Fibroblasts were identified by their archetypal markers LUM, DCN, VIM, PDGFRA, and COL1A2

HSC(hematopoietic stem cells):
黑色素肿瘤细胞:
Tumor cells were identified using MLANA, MITF,and DCT. Tumor cells were further divided into subgroups by expression of PRAME and GEP genes(“Single-cell analysis reveals new evolutionary complexity in uveal melanoma”)

### 使用Python处理单细胞测序数据以提取和输出Marker基因 为了实现这一目标,可以利用`scanpy`库来完成单细胞转录组数据分析中的多个步骤。下面展示的是如何通过该库读取AnnData对象、预处理数据以及识别并保存marker基因。 #### 安装依赖包 如果尚未安装必要的软件包,则可以通过pip命令进行安装: ```bash pip install scanpy anndata pandas numpy matplotlib seaborn scipy ``` #### 加载所需模块与数据集 加载用于分析的数据文件,并设置默认的assay为RNA以便后续操作能够针对此层展开。 ```python import scanpy as sc import pandas as pd # Load your dataset into AnnData object 'adata' adata = sc.read_10x_h5('path_to_your_file.h5') # Replace with actual path to .h5 file or other formats supported by Scanpy. sc.pp.filter_cells(adata, min_genes=200) sc.pp.filter_genes(adata, min_cells=3) # Set default assay to RNA for operations that require it explicitly specified adata.uns['default_assay'] = 'RNA' ``` #### 数据过滤与标准化 去除低质量细胞(如线粒体比例过高),并对计数矩阵应用log转换和其他常规变换方法使不同样本间具有可比性。 ```python mito_genes = adata.var_names.str.startswith('MT-') adata.obs['percent_mito'] = np.sum( adata[:, mito_genes].X, axis=1).A1 / np.sum(adata.X, axis=1).A1 adata.obs['n_counts'] = adata.X.sum(axis=1).A1 # Filter cells based on quality controls metrics we just calculated sc.pl.violin(adata, ['n_genes_by_counts', 'total_counts', 'pct_counts_mt'], jitter=0.4, multi_panel=True) filter_result = sc.pp.recipe_zheng17(adata, copy=True) ``` #### 找到差异表达的标记物(Marker Genes) 使用FindMarkers函数寻找特定聚类(cluster)相对于其他所有群组之间显著上调/下调表达的特征基因列表;也可以比较两个指定cluster之间的区别。 ```python # Perform clustering and PCA before finding markers sc.tl.pca(adata) sc.pp.neighbors(adata) sc.tl.umap(adata) sc.tl.leiden(adata) # Identify marker genes per cluster compared against rest of clusters markers = pd.DataFrame() for i in range(int(max(adata.obs['leiden'])) + 1): de_res = sc.tl.rank_genes_groups(adata, groupby='leiden', groups=[str(i)], reference='rest', method='wilcoxon') temp_df = pd.DataFrame({ "names": adata.uns['rank_genes_groups']['names'][str(i)], "scores": adata.uns['rank_genes_groups']['scores'][str(i)] }) markers = pd.concat([markers,temp_df]) # Save results to CSV file markers.to_csv("marker_genes.csv", index=False) ``` 上述过程涵盖了从准备环境到最后导出结果的主要环节[^3]。值得注意的是,在实际研究工作中可能还需要进一步调整参数配置以适应具体实验设计的要求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值