PCL 基于超体素的点云分割【2024最新版】

271 篇文章 ¥19.90 ¥99.00
本文介绍了PCL库中的超体素分割算法VCCS,详细讲解了超像素和超体素的概念,以及在3D点云处理中的应用。通过区域生长和局部k均值聚类实现高效分割,保持物体边界并保持3D空间内的均匀分布。文章还提供了代码实现和结果展示。


在这里插入图片描述

本文由CSDN点云侠原创。博客长期更新,本文最近一次更新时间为:2024年12月29日,代码更新至PCL1.14.1版本。

一、算法原理

1、概述

  人类视觉感知到的图像信息并不是从某一个孤立的像素点得到的,而是从由大量像素点组合而成的区域得到的,孤立的单一像素点并没有具体的实际意义, 只有许多像素点组合在一起才对人类的视觉感知有意义。可见,像素并不是视觉感知的着重点。在这种需求下,二维图像处理领域产生了“ 超像素” 的概念。所谓超像素,是由许多像素点构成的小区域,这些像素点在位置上是相邻的,并且在某些特征(图像的亮度、颜色、纹理等特征)存在一定的相似性,这些小区域大都没有破坏图像的边界信息,而且还保留了对图像进行进一步分割的有效信息。
  现在超像素越来越被广泛地应用于计算机视觉领域中,并且作为图像分割和模式识别的初始阶段,最根本的原因是: 一方面使用超像素后可以有效地减少图像局部信息的冗余,使图像处理的复杂度和运算量大大降低;另一方面基于像素级的传统的图像处理方法,也不能准确的定位目标区域的边界,只能给出一个大概的位置。在三维点云数据处理领域,借鉴类似于超像素的概念,在三维空间引出超体素的概念。

评论 18
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值