XAI之EBM:基于泰坦尼克数据集利用EBM算法(interpret库)实现可解释性(可视化EBM模型及其决策过程+局部解释+全局解释)之详细攻略

这篇博客详细介绍了如何利用EBM算法(interpret库)在泰坦尼克数据集上进行模型训练,并探讨了模型的可解释性,包括全局和局部解释。虽然可视化EBM模型遇到报错,但成功展示了如何通过EBM获取特征重要性和对预测的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

XAI之EBM:基于泰坦尼克数据集利用EBM算法(interpret库)实现可解释性(可视化EBM模型及其决策过程+局部解释+全局解释)之详细攻略

目录

基于泰坦尼克数据集利用EBM算法(interpret库)实现可解释性(可视化EBM模型及其决策过程+局部解释+全局解释)

# 1、定义数据集

# 2、数据预处理

# 3、模型训练

# 3.1、拆分训练集和测试集

# 3.2、训练EBM模型

# 3.3、评估EBM模型

# 4、模型可解释性

# # 4.1、可视化EBM模型:报错未解决

# 4.2、利用EBM模型实现全局解释

# 4.3、利用EBM模型实现局部解释

实现代码


基于泰坦尼克数据集利用EBM算法(interpret库)实现可解释性(可视化EBM模型及其决策过程+局部解释+全局解释)

# 1、定义数据集

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个处女座的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值