AGI之Agent:AutoGPT(一个实验性的开源尝试使GPT-4完全代理自主)的简介、安装和使用方法、案例应用之详细攻略
目录
(2)、解决FileNotFoundError或“找不到文件或目录”错误
AutoGPT的简介
2023 年 3 月 30 日,视频游戏公司 Significant Gravitas Ltd 的首席游戏开发人员 Toran Bruce Richards 发布了 Auto-GPT。Auto-GPT 是基于 OpenAI 的 GPT-4 API 的开源自主 AI 代理,这是一个利用AI控制AI的现象级产品。AutoGPT的核心能力在于能够帮助用户拆解任务。用户只需提出任务需求,AutoGPT便会自动进行任务分析和执行,完全省去了与ChatGPT不断对话的繁琐过程。
AutoGPT是基于GPT-4的开源AI代理Python应用程序。用户只需向AutoGPT提供目标任务,它就能完全自动地根据任务指令进行分析和执行。用户无需参与中间环节,不必进行对话,只需向AutoGPT提出问题,它会自行回答。这一过程实现了自主提问和回答,使得用户能够更加高效地完成任务。
AutoGPT的构想始于OpenAI发布了其GPT-4模型,并附有一篇论文概述了该模型的高级推理和任务解决能力。这个概念(至今仍然如此)相当简单:让一个大型语言模型反复决定要做什么,同时将其行动的结果反馈回提示。这使得程序能够迭代和逐渐朝着其目标努力。这个程序能够代表用户执行操作的事实使其成为一个代理。在AutoGPT的情况下,用户仍然需要授权每个操作,但随着项目的进展,我们将能够赋予代理更多的自治权,仅在某些操作上需要同意。
AutoGPT是一个通用的代理,这意味着它并非针对特定任务设计。相反,它被设计为能够在许多学科领域执行各种任务,只要这些任务可以在计算机上完成。
AutoGPT是使AI的力量对每个人都可访问、可使用和可构建的愿景。我们的使命是提供工具,让您可以专注于重要的事情:
>> 构建 - 为令人惊奇的事物奠定基础。
>> 测试 - 将您的代理微调至完美。
>> 委托 - 让AI为您工作,让您的想法变为现实。
成为革命的一部分!AutoGPT注定将保持在AI创新的前沿。
GitHub地址:https://github.com/Significant-Gravitas/AutoGPT
贡献地址:
1、竞技场排行榜
要挑战evo.ninja、AutoGPT和其他代理,请将您的基准运行提交到排行榜,并且也许您的代理将在这里上榜!
当前最佳代理: evo.ninja
AutoGPT Arena黑客马拉松中,evo.ninja在我们的竞技场排行榜上获得了第一名,证明自己是最优秀的开源通用代理。现在就在 https://evo.ninja 尝试它吧!
地址:https://github.com/polywrap/evo.ninja
AutoGPT的安装和使用方法
官方地址:https://github.com/Significant-Gravitas/AutoGPT/blob/master/QUICKSTART.md
1、构建模块
Forge
打造您自己的代理!– Forge是您的代理应用的即用模板。所有样板代码已经处理好,让您可以将所有创意投入到让您的代理脱颖而出的事物中。所有教程都位于此处。来自forge.sdk的组件也可以单独使用,加速开发并减少在代理项目中的样板。
使用Forge入门 – 本指南将引导您完成创建自己的代理并使用基准和用户界面的过程。
了解有关Forge的更多信息
基准
测量您的代理性能!agbenchmark可与支持代理协议的任何代理一起使用,与项目的CLI集成使其更易于与AutoGPT和基于forge的代理一起使用。基准提供了严格的测试环境。我们的框架允许进行自主、客观的性能评估,确保您的代理已准备好应对实际行动。
agbenchmark在Pypi上 | ��� 了解有关基准的更多信息
排行榜
通过UI提交您的基准运行,并在AutoGPT Arena排行榜上占据您的位置!得分最高的通用代理将获得当前最佳代理的称号,并将被收入我们的存储库,以便人们可以轻松通过CLI运行它。
AutoGPT Arena排行榜的截图
用户界面
使代理易于使用!前端为您提供了一个用户友好的界面,用于控制和监视您的代理。它通过代理协议连接到代理,确保与我们生态系统内外的许多代理兼容。
前端可以立即与存储库中的所有代理一起使用。只需使用CLI运行您选择的代理!
了解有关前端的更多信息
CLI
为了尽可能轻松地使用存储库提供的所有工具,存储库的根目录中包含了一个CLI:
命令选项、用法 | $ ./run 用法: cli.py [OPTIONS] COMMAND [ARGS]... 选项: --help 显示此消息并退出。 命令: agent 创建、启动和停止代理的命令 arena 进入竞技场的命令 benchmark 启动基准测试并列出测试和类别的命令 setup 安装系统所需的依赖项。 只需克隆存储库,使用 ./run setup 安装依赖项,然后您就可以开始使用了! |
构建您自己的代理 - 快速入门
地址:https://github.com/Significant-Gravitas/AutoGPT/blob/master/QUICKSTART.md
0、系统要求
此项目支持Linux(基于Debian)、Mac和Windows子系统用于Linux(WSL)。如果您使用的是Windows系统,则需要安装WSL。您可以在这里找到WSL的安装说明。
1、设置
(1)、分叉存储库
要分叉存储库,请按照以下步骤操作:
>> 导航到存储库的主页面。
>> 在页面右上角,点击分叉。
>> 在下一页中,选择要在下面创建分叉的GitHub帐户。
>> 等待分叉过程完成。现在您在GitHub帐户中有了存储库的副本。
(2)、克隆存储库
要克隆存储库,您需要在系统上安装Git。如果尚未安装Git,可以从这里下载。安装Git后,请按照以下步骤操作:
>> 打开您的终端。
>> 导航到要克隆存储库的目录。
>> 运行git clone命令以克隆刚刚创建的分叉。
>> 然后在您的IDE中打开项目
(3)、在IDE中打开项目
设置项目,接下来,我们需要设置所需的依赖项。我们有一个工具可以帮助您在存储库上执行所有需要的任务。通过在终端中键入./run运行命令即可访问该工具。
您需要使用的第一个命令是./run setup。这将引导您完成设置系统的过程。最初,您将获得有关安装flutter、chrome和设置github访问令牌的说明,如以下图像所示:
注意:对于高级用户。仅在执行./run arena enter命令时才需要github访问令牌,以便系统可以自动创建PR
2、对于Windows用户
如果您是Windows用户并且在安装WSL后遇到问题,请按照以下步骤解决问题。
(1)、更新WSL
在Powershell或命令提示符中运行以下命令:
>> 启用可选的WSL和虚拟机平台组件。
>> 下载并安装最新的Linux内核。
>> 将WSL 2设置为默认。
>> 下载并安装Ubuntu Linux发行版(可能需要重新启动)。
wsl --install
有关更详细的信息和其他步骤,请参阅Microsoft的WSL设置环境文档。
(2)、解决FileNotFoundError或“找不到文件或目录”错误
当运行./run setup时,如果遇到“找不到文件或目录”或FileNotFoundError等错误,可能是因为Windows风格的换行符(CRLF - 换行符换行符)与Unix / Linux风格的换行符(LF - 换行符)不兼容。
要解决此问题,您可以使用dos2unix实用程序将脚本中的换行符从CRLF转换为LF。以下是安装和在脚本上运行dos2unix的方法:
sudo apt update
sudo apt install dos2unix
dos2unix ./run
执行上述命令后,运行./run setup应该能够成功。
(3)、将项目文件存储在WSL文件系统中
如果您继续遇到问题,请考虑将项目文件存储在WSL文件系统而不是Windows文件系统中。这种方法避免了与路径翻译和权限相关的问题,并提供了更一致的开发环境。
您可以继续运行该命令,以了解有关设置进度的反馈。
设置完成后,该命令将返回如下输出:
3、创建您的代理
现在设置已经完成,是时候创建您的代理模板了。通过运行./run agent create YOUR_AGENT_NAME,将YOUR_AGENT_NAME替换为您选择的名称来执行此操作。有效名称的示例包括:swiftyosgpt或SwiftyosAgent或swiftyos_agent
创建代理后,是时候正式进入竞技场了!通过运行./run arena enter YOUR_AGENT_NAME来执行此操作。
进入竞技场
注意:对于高级用户,创建一个新分支并在竞技场目录中创建一个名为YOUR_AGENT_NAME.json的文件。然后提交此文件并创建一个PR以合并到主存储库中。只允许单文件条目。json文件需要以下格式。
{
"github_repo_url": "https://github.com/Swiftyos/YourAgentName",
"timestamp": "2023-09-18T10:03:38.051498",
"commit_hash_to_benchmark": "ac36f7bfc7f23ad8800339fa55943c1405d80d5e",
"branch_to_benchmark": "master"
}
>> github_repo_url: 您的分叉的URL
>> timestamp: 此文件的最后更新时间戳
>> commit_hash_to_benchmark: 您的条目的提交哈希。每当您准备好正式输入黑客马拉松时,都要更新此哈希
>> branch_to_benchmark: 您用于开发代理的分支,默认为master。
4、运行您的代理
可以使用./run agent start YOUR_AGENT_NAME启动您的代理
这会在http://localhost:8000/上启动代理。
(1)、启动代理
可以从http://localhost:8000/访问前端,您首先需要使用Google帐户或GitHub帐户登录。
(2)、登录
登录后,您将获得一个类似于此的页面。页面左侧是您的任务历史,右侧是发送任务给您的代理的“聊天”窗口。
当您完成代理操作或需要重新启动时,请使用Ctrl-C结束会话,然后可以重新运行启动命令。
如果您遇到问题并希望确保代理已停止,可以使用./run agent stop命令,该命令将终止使用端口8000的进程,这应该是代理。
5、评估您的代理
评估系统也可以使用CLI工具访问:
agpt%./run benchmark
用法:cli.py benchmark [OPTIONS] COMMAND [ARGS]...
启动基准测试和列出测试和类别的命令
选项:
--help 显示此消息并退出。
命令:
类别 基准测试类别组命令
启动 启动基准测试命令
测试 基准测试组命令
agpt%./run benchmark categories
用法:cli.py benchmark categories [OPTIONS] COMMAND [ARGS]...
基准测试类别组命令
选项:
--help 显示此消息并退出。
命令:
列表 列出基准测试类别命令
agpt%./run benchmark tests
用法:cli.py benchmark tests [OPTIONS] COMMAND [ARGS]...
基准测试组命令
选项:
--help 显示此消息并退出。
命令:
详细信息 基准测试详细信息命令
列表 列出基准测试命令
基准测试已分为不同的技能类别,您可以在其中测试您的代理。您可以使用以下命令查看哪些类别可用
./run benchmark categories list
#以及哪些测试可用
./run benchmark tests list
最后,您可以使用以下命令运行基准测试
./run benchmark start YOUR_AGENT_NAME
AutoGPT的案例应用
更新中……