LLMs之AnythingLLM:anything-llm的简介、安装和使用方法、案例应用之详细攻略

LLMs之AnythingLLM:anything-llm的简介、安装和使用方法、案例应用之详细攻略

目录

anything-llm的简介

1、主要功能

2、技术原理概述

3、支持的LLM、嵌入器、转录模型和矢量数据库

(1)、支持的LLM

(2)、支持的嵌入模型

(3)、支持的转录模型

(4)、支持的矢量数据库

4、部署方法:Docker、AWS、GCP、Digital Ocean、Render.com、Railway等

5、如何进行开发设置

anything-llm的安装和使用方法

1、安装

2、使用方法

T1、新建工作区(workspace)并测试Chat功能

T2、新建工作区(workspace)并测试RAG功能:上传文档并在界面中实现对话查询

anything-llm的案例应用

LLMs之RAG:基于Ollama框架(开启服务器模式+加载LLMs)部署LLaMA3/Phi-3等大语言模型、并结合AnythingLLM框架(配置参数LLM Preference【LLM Provider-Chat Model】 /Embedding Preference/Vector Database)实现RAG功能(包括本地文档和抓取网页)实现Chat聊天以及本地知识库问答实战


anything-llm的简介

AnythingLLM是一款您正在寻找的一体化人工智能应用程序。与您的文档进行聊天,使用AI代理,超级可配置,多用户,并且无需烦人的设置。

AnythingLLM是一个全栈应用程序,可以使用商用或开源的LLM/嵌入器/语义向量数据库模型,帮助用户在本地或云端搭建个性化的聊天机器人系统,且无需复杂设置

AnythingLLM是一个方便易用的端到端聊天机器人应用,支持丰富的模型和文档管理功能,且部署方式灵活多样,可以帮助用户轻松打造个性化的机器人系统。

AnythingLLM是一个全栈应用程序,可以让您将任何文档、资源或内容转化为任何LLM在聊天过程中可以用作参考的上下文。该应用程序允许您选择使用哪个LLM或矢量数据库,并支持多用户管理和权限

AnythingLLM是一个全栈应用程序,您可以使用现成的商业LLM或流行的开源LLM和矢量数据库解决方案构建一个无需妥协的私人ChatGPT,您既可以在本地运行,也可以远程托管,并能够智能地与您提供的任何文档进行聊天。

AnythingLLM将您的文档划分为称为工作区的对象。工作区类似于线程,但额外添加了对文档的容器化。工作区可以共享文档,但它们彼此之间不会交流,因此您可以保持每个工作区的上下文清晰。

GitHub地址GitHub - Mintplex-Labs/anything-llm: The all-in-one Desktop & Docker AI application with full RAG and AI Agent capabilities.

官网地址AnythingLLM | The ultimate AI business intelligence tool

1、主要功能

>> 支持多用户、权限管理。每个用户可以有自己的工作空间

>> 工作空间内可以使用智能代理,例如搜索网页或运行代码等

>> 文档支持多种格式(PDF、TXT、DOCX等),且可以从UI管理归档到向量数据库

>> 聊天模式有对话模式和查询模式之分。两种聊天模式:对话和查询。对话保留先前的问题和修订。查询是针对您的文档的简单问答。

>> 引文支持让用户在聊天中引用文档

>> 成本效率高,每个文档的归档和调用成本很低

>> 开放API支持自定义集成

>> 在聊天中引用

>> 100%云部署就绪。

>> “自带LLM”模型。

>> 用于管理非常大的文档的极其高效的节省成本措施。您永远不会因为嵌入大型文档或文本比多次而付费。比其他文档聊天机器人解决方案节省90%的成本。

>> 全面的开发人员API,用于自定义集成!

2、技术原理概述

前端使用React开发用户界面,后端使用Node.js搭建服务和向量数据库交互,支持Docker部署。文档处理使用单独的Node服务。此单体存储库包含三个主要部分:

>> 前端:一个viteJS + React前端,您可以运行它来轻松创建和管理LLM可以使用的所有内容。

>> 服务器:一个NodeJS express服务器,用于处理所有交互并进行所有矢量数据库管理和LLM交互。

>> Docker:Docker说明和构建过程+从源代码构建的信息。

>> 收集器:处理和解析来自UI的文档的NodeJS express服务器。

3、支持的LLM、嵌入器、转录模型和矢量数据库

支持广泛的LLM、嵌入器、转录和向量数据库模型,例如Google、微软、OpenAI、HuggingFace等主流模型。

(1)、支持的LLM

(2)、支持的嵌入模型

(3)、支持的转录模型

(4)、支持的矢量数据库

4、部署方法:Docker、AWSGCPDigital OceanRender.comRailway等

除支持Docker部署外,还提供多种自助托管方案,如云平台、Digital Ocean等,也支持本地自行搭建。Mintplex Labs和社区维护了许多部署方法、脚本和模板,您可以使用这些方法在本地运行AnythingLLM。请参考下表,了解如何在您喜欢的环境中部署,或者自动部署。

Dockeranything-llm/docker/HOW_TO_USE_DOCKER.md at master · Mintplex-Labs/anything-llm · GitHub

AWS:anything-llm/cloud-deployments/aws/cloudformation/DEPLOY.md at master · Mintplex-Labs/anything-llm · GitHub

GCP:anything-llm/cloud-deployments/gcp/deployment/DEPLOY.md at master · Mintplex-Labs/anything-llm · GitHub

Digital Ocean:anything-llm/cloud-deployments/digitalocean/terraform/DEPLOY.md at master · Mintplex-Labs/anything-llm · GitHub

Render.com:https://render.com/deploy?repo=https://github.com/Mintplex-Labs/anything-llm&branch=render

Railway:Deploy AnythingLLM on Railway | Railway

5、如何进行开发设置

yarn setup 填写每个应用程序部分所需的.env文件(从存储库的根目录)。

填写完毕后再继续。确保server/.env.development已填写,否则可能会出现问题。

yarn dev:server 启动本地服务器(从存储库的根目录)。

yarn dev:frontend 启动本地前端(从存储库的根目录)。

yarn dev:collector 然后运行文档收集器(从存储库的根目录)。

anything-llm的安装和使用方法

1、安装

下载地址Download AnythingLLM for Desktop

下载地址💻 AnythingLLM Desktop | AnythingLLM

2、使用方法

T1、新建工作区(workspace)并测试Chat功能

T2、新建工作区(workspace)并测试RAG功能:上传文档并在界面中实现对话查询

anything-llm的案例应用

持续更新中……

LLMs之RAG:基于Ollama框架(开启服务器模式+加载LLMs)部署LLaMA3/Phi-3等大语言模型、并结合AnythingLLM框架(配置参数LLM Preference【LLM Provider-Chat Model】 /Embedding Preference/Vector Database)实现RAG功能(包括本地文档和抓取网页)实现Chat聊天以及本地知识库问答实战

https://yunyaniu.blog.csdn.net/article/details/138514062

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个处女座的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值