ML之Medicine:利用机器学习研发药物—《Machine Learning for Pharmaceutical Discovery and Synthesis Consortium》

MIT研究团队运用机器学习技术革新药物合成规划,自动化分子设计流程,显著提升新药研发效率。通过数据驱动的方法,该团队建立了一套能够预测化学反应路径的系统,旨在从目标分子出发,逆向设计出可行的合成路线。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ML之Medicine:利用机器学习研发药物—《Machine Learning for Pharmaceutical Discovery and Synthesis Consortium》

 

 

目录

Machine Learning in Computer-Aided Synthesis Planning

论文以及Demo


 

 

Machine Learning in Computer-Aided Synthesis Planning

Connor W. Coley , William H. Green* , and Klavs F. Jensen* 

Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States

Acc. Chem. Res., 2018, 51 (5), pp 1281–1289

DOI: 10.1021/acs.accounts.8b00087

Publication Date (Web): May 1, 2018

Copyright © 2018 American Chemical Society

*E-mail: whgreen@mit.edu., *E-mail: kfjensen@mit.edu.

论文以及Demo

概要

         Computer-aided synthesis planning (CASP) is focused on the goal of accelerating the process by which chemists decide how to synthesize small molecule compounds. The ideal CASP program would take a molecular structure as input and output a sorted list of detailed reaction schemes that each connect that target to purchasable starting materials via a series of chemically feasible reaction steps. Early work in this field relied on expert-crafted reaction rules and heuristics to describe possible retrosynthetic disconnections and selectivity rules but suffered from incompleteness, infeasible suggestions, and human bias. With the relatively recent availability of large reaction corpora (such as the United States Patent and Trademark Office (USPTO), Reaxys, and SciFinder databases), consisting of millions of tabulated reaction examples, it is now possible to construct and validate purely data-driven approaches to synthesis planning. As a result, synthesis planning has been opened to machine learning techniques, and the field is advancing rapidly.

新药研发的加速器:MIT研究人员开发机器学习方法,实现分子设计自动化

lab: http://mlpds.mit.edu/

ref: https://pubs.acs.org/doi/full/10.1021/acs.accounts.8b00087

paper: https://arxiv.org/pdf/1802.04364.pdf

datasets: http://zinc.docking.org/

Demo:http://askcos.mit.edu/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个处女座的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值