DynaSLAM-4 DynaSLAM中Mask R-CNN部分源码解析(Ⅲ)

本文详细解读了DynaSLAM中的RPN(Region Proposal Network)层,包括其作用和实现,以及ProposalLayer的候选框过滤过程。RPN通过共享卷积对生成的候选框进行前景/背景分类,并进行边界框回归。ProposalLayer则对大量候选框进行过滤,选取得分高的框体,并通过NMS进一步筛选。接着介绍了DetectionTargetType层的功能,包括正负样本的选择、标签定义以及处理数据集中的特殊情况,如多个物体在一个框内的情况。
摘要由CSDN通过智能技术生成

目录

1.RPN

1.1 RPN层的作用与实现解读

1.2 候选框过滤ProposalLayer层

2. DetectionTargetType层

2.1 DetectionTargetType层作用

2.2  正负样本选择与标签定义


1.RPN

1.1 RPN层的作用与实现解读

        上篇博客中我们解释了如何通过generate_pyramid_anchors在每一个特征层上生成anchors,而这些框只是一些随便框的一些框而已,而物体检测我们最终框出来的框是物体所在位置的框。

        在RPN层中:我们要做的是将由generate_pyramid_anchors函数生成的每一个生成的候选框简单的划分为前景和背景。即是一个物体/不是一个物体。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

APS2023

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值