目录
1.RPN
1.1 RPN层的作用与实现解读
上篇博客中我们解释了如何通过generate_pyramid_anchors在每一个特征层上生成anchors,而这些框只是一些随便框的一些框而已,而物体检测我们最终框出来的框是物体所在位置的框。
在RPN层中:我们要做的是将由generate_pyramid_anchors函数生成的每一个生成的候选框简单的划分为前景和背景。即是一个物体/不是一个物体。
本文详细解读了DynaSLAM中的RPN(Region Proposal Network)层,包括其作用和实现,以及ProposalLayer的候选框过滤过程。RPN通过共享卷积对生成的候选框进行前景/背景分类,并进行边界框回归。ProposalLayer则对大量候选框进行过滤,选取得分高的框体,并通过NMS进一步筛选。接着介绍了DetectionTargetType层的功能,包括正负样本的选择、标签定义以及处理数据集中的特殊情况,如多个物体在一个框内的情况。
目录
上篇博客中我们解释了如何通过generate_pyramid_anchors在每一个特征层上生成anchors,而这些框只是一些随便框的一些框而已,而物体检测我们最终框出来的框是物体所在位置的框。
在RPN层中:我们要做的是将由generate_pyramid_anchors函数生成的每一个生成的候选框简单的划分为前景和背景。即是一个物体/不是一个物体。

被折叠的 条评论
为什么被折叠?