DynaSLAM-3 DynaSLAM中Mask R-CNN部分源码解析(Ⅱ)

本文深入解析DynaSLAM中的FPN(Feature Pyramid Network)原理和实现,包括FPN如何融合多层特征图以获取丰富的语义和轮廓信息,以及详细介绍了候选框生成的过程,通过特征图生成不同尺度的候选框,并将其映射回原始图像坐标系。
摘要由CSDN通过智能技术生成

目录

1.FPN

1.1 FPN层原理

1.2 FPN代码解析 

2. 候选框的生成

2.1 根据特征图生成候选框


1.FPN

1.1 FPN层原理

        在Faster R-CNN网络中,提取特征的时候,将原始数据经过一系列的卷积层,我们只用最后一层的特征图进行提取。

        比如五层卷积神经网络,直接把第五层的output结果拿出来当作特征提取的结果了。

        但是我们在进行特征提取的时候,我们认为网络层数越高提取信息越丰富。(随着卷积层的增加越往后的卷积层提取出来的特征越是包含整体的语义信息)(原因是越往后的卷积层感受野越大、特征融合越多)。但是越往后的特征层越容易忽略前面的原始图片的细节轮廓信息(小物体信息)。

        于是我们提出了FPN层:我们用多层特征层来得到特征提取的结果。

图一 图像金字塔
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

APS2023

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值