李代数求导

博客介绍了如何利用李代数解决姿态表示(如SO(3)和SE(3))的求导问题。由于姿态表示没有加法操作,通过李代数的加法特性进行求导。讨论了左扰动和右扰动模型,特别是在SO(3)和SE(3)李代数上的应用,简化了对旋转矩阵的导数计算。总结了李群和李代数在处理欧式变换矩阵导数问题中的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

由于表示姿态的李群与表示位姿的李群上并没有定义加法,而求导数是需要加法的。因此此时如何求导就成了一个需要解决的问题,它们的李代数由向量组成,具有良好的加法运算,因此我们可以利用李代数来解决对位姿的求导问题。

是一个矩阵而不是标量,因此以下公式不成立:

BCH公式:处理两个矩阵指数之积时,会产生一些李括号组成的余项

### 关于 SLAM 中群与代数的代码实现 在《视觉SLAM十四讲》中提到,为了处理旋转和平移操作中的微分问题,引入了群和代数的概念。由于群上的运算仅限于乘法而缺乏加法规则,这使得在其上定义导数变得困难[^3]。 针对这一挑战,在实际编程实践中通常会通过指数映射将群转换至其对应的代数空间内进行计算,因为后者是一个线性的向量空间,允许执行诸如求导这样的操作。下面给出一段简单的 Python 实现例子用于展示如何利用 Sophus 库来进行 SE(3) 的基本操作: ```python import sophus as sp from scipy.spatial.transform import Rotation as R def se3_exp_map(w,u): """Compute the exponential map from Lie algebra to Lie group. Args: w (numpy.ndarray): A 3D vector representing angular velocity. u (numpy.ndarray): A 3D vector representing linear velocity. Returns: sophus.SE3: An element of SE(3). """ omega_hat = sp.so3.exp(sp.Vector3d(*w)) v = sp.Vector3d(*u) return sp.SE3(omega_hat, v) if __name__ == "__main__": # Example usage with random values for demonstration purposes only rotation_velocity = [0.1, 0.2, 0.3] translation_velocity = [0.4, 0.5, 0.6] transformation_matrix = se3_exp_map(rotation_velocity, translation_velocity) print(transformation_matrix.matrix()) ``` 上述代码片段展示了怎样创建一个 `sophus` 类型的对象并打印出相应的变换矩阵。这里使用的是 Sophus 这一专门设计用来高效表示 SO(3)/SE(3) 及其对应代数 so(3)/se(3) 的 C++/Python 库[^4]。 对于更复杂的场景比如轨迹绘制,则可能涉及到读取外部文件以及调用图形库如 Pangolin 来可视化结果。这部分工作往往依赖具体的应用需求和个人偏好来决定具体的实施方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值