evo测评TUM数据集

本文介绍了如何使用evo工具对ORB_SLAM2在TUM数据集上的运行结果进行评估。通过evo traj展示轨迹,evo ape和evo rpe计算绝对和相对姿态误差,分析SLAM系统的精度。同时,还探讨了配准、参数选项和误差指标的含义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.Github地址
2.安装安装evo
3.evo命令行交互
Metrics:

evo_ape - 绝对姿态误差
evo_rpe - 相对姿态误差

Tools:

evo_traj - 分析、绘制、输出一个或多个轨迹
evo_res - 比较一个或多个evo_ape/eco_rpe的结果文件
evo_fig - 重新打开序列化图像(存储为serialize_plot)
evo_config - 全局设置和配置文件操作

1)绘制多个轨迹 evo_traj
支持格式有tum,kitti,eurco。用ORB_SLAM2跑TUM数据集后得到两个txt文件,用evo将其与groundtruth一起显示出来

evo_traj tum CameraTrajectory.txt KeyFrameTrajectory.txt groundtruth.txt -p --plot_mode=xyz

结果:
evo显示的轨迹图但是groundtruth在这两个轨迹很远的地方?
有以下参数
-p或–plot 绘图
-v或–verbose 输出相关信息(均值,方差等)
-f或–full_check检查相关信息(时间戳是否对应,四元数是不是单位四元数)
-a或–align对轨迹进行配准,用ICP的方法,并不是仅仅将起点对齐
运用陪准需要给定–ref

--align or -a = SE(3) Umeyama alignment (rotation, translation)
--align --correct_scale or -as = Sim(3) Umeyama alignment (rotation, translation, scale)
--correct_scale or -s = scale correction only

例如:
相机轨迹与groundtruth配准之前

evo_traj tum CameraTrajectory.txt groundtruth.txt -p

在这里插入图片描述配准之后

evo_traj tum CameraTrajectory.txt --ref=groundtruth.txt -p -a

在这里插入图片描述2)在轨迹上进行测量
evo_ape:绝对位姿误差,常被用作绝对轨迹误差,比较估计轨迹和参考轨迹并计算整个轨迹的统计数据,适用于测试轨迹的全局一致性。
命令语法:命令 格式 参考轨迹 估计轨迹 [可选项]
可选项有对齐命令、画图、保存结果等。

evo_ape tum groundtruth.txt CameraTrajectory.txt -r full -va -p --save_results results/ORB.zip

其中-r表示ape所基于的姿态关系
在这里插入图片描述-v表示verbose mode,详细模式
在这里插入图片描述可通过evo_ape tum --help查看参数
evo_rpe:相对位姿误差比较运动(姿态增量),相对位姿误差可以给出局部精度,例如slam系统每米的平移或者旋转漂移量。

命令语法:命令 格式 参考轨迹 估计轨迹 [可选项]
可选项有对齐命令、画图、保存结果等。
参考链接:SLAM精度测评——EVO
evo官方链接wiki

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值