【资料总结系列】激光SLAM算法——3D回环检测总结

文章总结了激光SLAM中回环检测的重要性,介绍了粗查找(如CSM-cartographer,Scan-context,IRIS)和精配准(如ICP,NDT)的策略,强调了快速和准确的回环检测对于提高位姿图精度的关键作用。此外,还提及了Scan-context的增强效果和回环检测的评价机制。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

该系列把一些日常的学习中把一些相关资料总结串联起来,方便后续使用与深入思考,有需要则延伸出一些有趣与有意思的内容。该文章对之前学习激光SLAM中回环检测的资料进行筛选与汇总,如有补充则另立文章进行拓展,同时感谢网络上的大佬分享。

引言

激光中的回环检测是为了降低SLAM前端的累计误差出现的,实际操作是通过计算当前位姿与曾经位姿间的变换,作为约束加入全局优化中,从而提高位姿图整体精度。激光SLAM会通过二阶段的方法实现激光回环,分为粗查找精配准

粗查找有许多算法提出,如CSM-cartographer,Scan-context,IRIS等,因为回环检测速度是需要足够的快来跟上后端收到数据速度的,否则会导致处理不过来,所以该阶段会在时间限制要求上达到不错的召回与准确率,为后一阶段提供一个好的初值与匹配对,另外该阶段也是有许多创意满满的的实现思路的,差异性较大。

精匹配思路相对就比较固定了,仅考虑到常规点云配准范畴就满足使用了,如ICP簇,NDT等,该部分在初值不佳,或匹配次数多的时候,都会造成大量耗时,会影响到回环检测效率,是需要合适的粗查找筛选绝大一部分来降低精匹配的消耗的。由于精查找是回环检测最后一关,假如给位姿图加入不当的回环,会产生十分不良影响,因此该处一般会建议加入归一化评分机制来确定最终效果是否合适,如ICP或NDT都有相应的误差得分考虑。

相关链接与汇总说明

后记

后续有精力的话展开说说CSM-cartographer,Scan-Context,IRIS的实现细节,并记录成文

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值