该系列把一些日常的学习中把一些相关资料总结串联起来,方便后续使用与深入思考,有需要则延伸出一些有趣与有意思的内容。该文章对之前学习激光SLAM中回环检测的资料进行筛选与汇总,如有补充则另立文章进行拓展,同时感谢网络上的大佬分享。
引言
激光中的回环检测是为了降低SLAM前端的累计误差出现的,实际操作是通过计算当前位姿与曾经位姿间的变换,作为约束加入全局优化中,从而提高位姿图整体精度。激光SLAM会通过二阶段的方法实现激光回环,分为粗查找与精配准。
粗查找有许多算法提出,如CSM-cartographer,Scan-context,IRIS等,因为回环检测速度是需要足够的快来跟上后端收到数据速度的,否则会导致处理不过来,所以该阶段会在时间限制要求上达到不错的召回与准确率,为后一阶段提供一个好的初值与匹配对,另外该阶段也是有许多创意满满的的实现思路的,差异性较大。
精匹配思路相对就比较固定了,仅考虑到常规点云配准范畴就满足使用了,如ICP簇,NDT等,该部分在初值不佳,或匹配次数多的时候,都会造成大量耗时,会影响到回环检测效率,是需要合适的粗查找筛选绝大一部分来降低精匹配的消耗的。由于精查找是回环检测最后一关,假如给位姿图加入不当的回环,会产生十分不良影响,因此该处一般会建议加入归一化评分机制来确定最终效果是否合适,如ICP或NDT都有相应的误差得分考虑。
相关链接与汇总说明
- 利用结构化信息回环
- 利用3D全局描述子构建回环
- 利用多分辨率地图、分支定界和ceres精匹配构建回环(著名的cartographer回环方法CSM-cartographer)
- 利用ScanContext提高粗查找部分效果(室外显著有效的ScanContext)
- IRIS,借鉴ScanContext思路进而构建的粗查找方法
后记
后续有精力的话展开说说CSM-cartographer,Scan-Context,IRIS的实现细节,并记录成文