大津法(OTSU)点云强度信息分割

本文介绍了大津法(OTSU),一种自适应的图像阈值分割方法,用于点云数据的处理。通过计算类间方差找到最佳分割阈值,适用于点云信息干扰较少的场景,如道路标线分割。文章包含计算方法的详细说明,并展示了代码实现及运行结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、相关介绍

二、计算方法

三、实现代码

四、运行结果


一、相关介绍

        大津法是一种灰度图像自适应的阈值分割方法,1979年由日本学者大津提出。大津法根据图像的灰度分布,将图像分成背景和前景两部分,前景就是需要按照阈值分割出来的部分。背景和前景的分割范围即需要计算的阈值。遍历不同的阈值,计算不同于阈值下前景和背景对应的类间方差,当类间方差取得极大值时,此时对应的分割阈值就是大津法(OTSU)计算的分割阈值。

        同理,由于点云的强度信息的特性,也可以利用此方法进行分类,但需要保证信息干扰较少,例如道路标线分割等场景较为适用。

二、计算方法

        对于一组点云数据P,前景(即目标)和背景的分割阈值记为T,属于前景的点云点数占整块点云的比例记为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云处理

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值