个人简介
作者简介:全栈研发,具备端到端系统落地能力,专注大模型的压缩部署、多模态理解与 Agent 架构设计。 热爱“结构”与“秩序”,相信复杂系统背后总有简洁可控的可能。
我叫观熵。不是在控熵,就是在观测熵的流动
个人主页:观熵
个人邮箱:privatexxxx@163.com
座右铭:愿科技之光,不止照亮智能,也照亮人心!
专栏导航
观熵系列专栏导航:
AI前沿探索:从大模型进化、多模态交互、AIGC内容生成,到AI在行业中的落地应用,我们将深入剖析最前沿的AI技术,分享实用的开发经验,并探讨AI未来的发展趋势
AI开源框架实战:面向 AI 工程师的大模型框架实战指南,覆盖训练、推理、部署与评估的全链路最佳实践
计算机视觉:聚焦计算机视觉前沿技术,涵盖图像识别、目标检测、自动驾驶、医疗影像等领域的最新进展和应用案例
国产大模型部署实战:持续更新的国产开源大模型部署实战教程,覆盖从 模型选型 → 环境配置 → 本地推理 → API封装 → 高性能部署 → 多模型管理 的完整全流程
TensorFlow 全栈实战:从建模到部署:覆盖模型构建、训练优化、跨平台部署与工程交付,帮助开发者掌握从原型到上线的完整 AI 开发流程
PyTorch 全栈实战专栏: PyTorch 框架的全栈实战应用,涵盖从模型训练、优化、部署到维护的完整流程
深入理解 TensorRT:深入解析 TensorRT 的核心机制与部署实践,助力构建高性能 AI 推理系统
Megatron-LM 实战笔记:聚焦于 Megatron-LM 框架的实战应用,涵盖从预训练、微调到部署的全流程
AI Agent:系统学习并亲手构建一个完整的 AI Agent 系统,从基础理论、算法实战、框架应用,到私有部署、多端集成
DeepSeek 实战与解析:聚焦 DeepSeek 系列模型原理解析与实战应用,涵盖部署、推理、微调与多场景集成,助你高效上手国产大模型
端侧大模型:聚焦大模型在移动设备上的部署与优化,探索端侧智能的实现路径
行业大模型 · 数据全流程指南:大模型预训练数据的设计、采集、清洗与合规治理,聚焦行业场景,从需求定义到数据闭环,帮助您构建专属的智能数据基座
机器人研发全栈进阶指南:从ROS到AI智能控制:机器人系统架构、感知建图、路径规划、控制系统、AI智能决策、系统集成等核心能力模块
人工智能下的网络安全:通过实战案例和系统化方法,帮助开发者和安全工程师识别风险、构建防御机制,确保 AI 系统的稳定与安全
智能 DevOps 工厂:AI 驱动的持续交付实践:构建以 AI 为核心的智能 DevOps 平台,涵盖从 CI/CD 流水线、AIOps、MLOps 到 DevSecOps 的全流程实践。
C++学习笔记?:聚焦于现代 C++ 编程的核心概念与实践,涵盖 STL 源码剖析、内存管理、模板元编程等关键技术
AI × Quant 系统化落地实战:从数据、策略到实盘,打造全栈智能量化交易系统
一、什么是“机器人系统”?为什么必须系统化看待?
很多初学者刚接触机器人时,往往从“搭车”“装电机”“跑代码”开始,但随着项目复杂度提升,会发现:
- 传感器接上了,但识别不准;
- 控制器逻辑写了,但机器人乱动;
- 地图建出来了,但路径绕远、不避障;
- 能跑,但一断电重启就出错、不好调试;
这些问题看似五花八门,本质是缺乏“系统思维”来理解机器人。
📌 机器人 ≠ 硬件 + 程序,而是一个完整的系统工程
一个真正的机器人,远不是几行控制电机的代码那么简单。
它是一个集成了:
- 各类传感器(获取环境信息)、
- 多层级控制器(完成运动任务)、
- 智能决策系统(做路径、规避、抓取等动作选择)、
- 通信与协调机制(节点间数据同步)、
- 以及完整的软件架构与硬件适配
的闭环感知-控制系统(Perception-Control Loop)。
🧠 为什么一定要“系统化思考”?
因为机器人不是跑一段逻辑就能完成任务的程序,它是一个分布式、异步、多线程、高协同的实体:
- 多个模块并行运行(感知模块、控制模块、导航模块等)
- 各子系统必须在毫秒级完成协作
- 数据处理要考虑延迟、同步、频率、误差、反馈
🚨 举例说明:
假如你的激光雷达频率是 10Hz,路径规划模块刷新频率是 1Hz,而控制器是 50Hz,没有经过合理设计的数据流路由与缓冲机制,系统将出现:
- 延迟反馈
- 路径不一致
- 抖动控制
- 甚至运动失控
🤖 系统级思维模型:感知 → 决策 → 控制 → 执行
这就是为什么机器人工程普遍采用下图这样的分层结构👇:
+---------------------+
| 感知系统 | 相机、激光雷达、IMU 等
+---------------------+
↓
+---------------------+
| 决策系统 | 路径规划、避障策略、状态机、AI推理
+---------------------+
↓
+---------------------+
| 控制系统 | 控制器PID、MPC等、动作执行逻辑
+---------------------+
↓
+---------------------+
| 执行系统 | 电机、舵机、底盘、机械臂等硬件执行器
+---------------------+
这个结构的核心思想是: