最新研究iTransformer: Transformer不适合多变量时序预测?

本文介绍了一种新的时间序列预测模型iTransformer,它通过反转Transformer架构并专注于多变量相关性,实现了在标准数据集上的SOTA性能。iTransformer通过独立处理变量token和自注意力机制,解决了Transformer在处理大回溯窗口和复杂多变量序列时的挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文标题:

Inverted Transformers are Effective for Time Series Forecasting

论文作者:

Yong Liu , Tengge Hu , Haoran Zhang , Haixu Wu, Shiyu Wang, Lintao Ma, Mingsheng Long

导读: iTransformer是2024年时间序列预测领域的最新研究成果,目前在标准时间序列预测数据集上展现出最佳的性能(SOTA)。iTransformer的核心创新在于对经典Transformer架构的运用与转置设计。©️【深蓝AI】编译

1.方法引出

最近,线性预测模型蓬勃发展,导致修改基于transformer预测器架构的热情降低。如图1(上)所示,这些预测器利用transformer对时间序列的时间token进行全局依赖性建模,每个token由相同时间戳的多个变体组成。然而,由于性能下降和计算爆炸,transformer在预测具有较大回溯窗口的序列时面临挑战。此外,每个时间token的嵌入融合了代表潜在延迟事件和不同物理测量的多个变量,这可能无法学习以变量为中心的表征,并导致无意义的attention map。具体来说:

●同一时间点的点基本上代表了完全不同的物理意义,而这些点是由不一致的测量记录下来的,它们被嵌入到一个token中,多变量相关性被抹去了;

●由于同一时间点所代表的局部感受野和时间不一致事件过多,单个时间步形成的token难以揭示有益信息;

●即便序列变化会受到序列顺序的很大影响,在时间维度上没有适当地采用排列不变的attention机制;

因此,Transformer 在捕捉基本序列表征和刻画多变量相关性方面的能力较弱,限制了其对不同时间序列数据的处理能力和泛化能力。

在这里插入图片描述
图1|普通transformer(上)与提出的 iTransformer(下)之间的比较。Transformer 嵌入了时间token,其中包含每个时间步的多变量表示。iTransformer 将每个序列独立嵌入到变量token中,这样注意力模块就能描述多变量相关性,而前馈网络则能编码序列表征©️【深蓝AI】编译

在这项工作中,作者对 Transformer 组件的职责进行了反思,并在不对基本组件进行任何修改的情况下重新利用了 Transformer 架构。如图1(下)所示,本文提出的 iTransformer 只需在反转维度上应用attention和前馈网络。具体来说,单个序列的时间点被嵌入到变量token中,attention机制利用这些token来捕捉多变量相关性;同时,前馈网络应用于每个变量标记来学习非线性表示。通过实验, iTransformer 在多变量预测任务中实现了全面的SOTA。

在这里插入图片描述
图2|在多个数据集下的平均结果(MSE)©️【深蓝AI】编译

2.实现细节

在多变量时间序列预测中,给定历史观测数据 X = { x 1 , … , x T } ∈ T × N {\bf{X}} = \{ { {\bf{x}}_1}, \ldots ,{ {\bf{x}}_T}\} \in {^{T \times N}} X={ x1,,xT}T×N,有 T T T个时间步长和 N N N个变量,预测未来 S S S个时间步长 Y = { x T + 1 , … , x T + S } ∈ S × N {\bf{Y}} = \{ { {\bf{x}}_{T + 1}}, \ldots ,{ {\bf{x}}_{T + S}}\} \in {^{S \times N}} Y={ xT+1,,xT+S}S×N。为方便起见,将 X t , : { {\bf{X}}_{t,:}} Xt,:表示在第 t t t步同时记录的时间点, X : , n { {\bf{X}}_{:,n}} X:,n表示以 n n n为索引的每个变量的整个时间序列。值得注意的是,由于数据集中变量之间存在系统时滞, X t , : { {\bf{X}}_{t,:}} Xt,:可能不能反映在现实世界中的在某个时间点的同一事件。此外,

### 攻防世界 XFF Referer HackBar 使用教程 #### 1. X-Forwarded-For (XFF) 和 Referer 头简介 X-Forwarded-For (XFF) 是 HTTP 请求头的一部分,通常由代理服务器添加,用于标识客户端 IP 地址。Referer 头则告知服务器当前请求是从哪个 URL 发起的。这两个头部信息可以被拦截并篡改,从而实现伪造 IP 或来源页面的效果[^1]。 #### 2. 安装和配置 HackBar 插件 为了方便操作这些 HTTP 头部信息,推荐使用 HackBar 浏览器插件: - **获取 HackBar** - 可以从 GitHub 上找到无需 License 的版本进行下载[^3]。 - **安装过程** - 将下载好的文件夹解压缩; - 进入浏览器设置 -> 更多工具 -> 扩展程序; - 启用开发者模式,点击加载已解压的扩展程序; - 选择刚刚解压出来的目录完成加载; #### 3. 利用 HackBar 修改 XFF 和 Referer 一旦成功安装好 HackBar 工具,在实际应用过程中就可以轻松更改上述两个重要的 HTTP 请求头字段了: ```bash # 设置自定义的 X-Forwarded-For 值 X-Forwarded-For: 123.123.123.123 # 自定义 Referer 字段的内容 Referer: http://example.com/ ``` 以上命令可以直接输入到 HackBar 提供的操作界面里执行,以此达到伪装真实访问源的目的[^4]。 #### 4. 注意事项 尽管能够利用此类技术手段来进行安全测试或学习研究,但在未经授权的情况下对他人网站实施任何形式的攻击都是违法行为,请务必遵守法律法规以及道德准则!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值