知识图谱-KGE-语义匹配-双线性模型-2018:SimplE

SimplE是由加拿大英属哥伦比亚大学学者在NIPS 2018上提出的一种知识图谱链接预测模型,是对传统CP模型的改进。SimplE通过增加对称项使实体的两个向量相互依赖,降低了复杂度并提高了预测性能。该模型在实验中表现出色,能以双线性形式表达,并能编码背景知识。在训练时采用L2正则化避免过拟合。
摘要由CSDN通过智能技术生成

 【paper】 SimplE Embedding for Link Prediction in Knowledge Graphs
【简介】 本文是加拿大英属哥伦比亚大学的两位学者发表在 NIPS 2018 上的工作,文章提出了 SimplE(Simple Embedding)。这篇和前面一篇差不多,也是对 1927 年的 CP 进行改进(简化),传统CP为实体分配的两个向量是独立训练的,SimplE利用关系的逆在三元组打分函数中加上了一个对称项,使得每个实体的两个向量依赖学习,并且 SimplE 的复杂度随 embedding 维度呈线性。

SimplE 可以被视为双线性模型,并且是 fully expressive,可以通过参数共享(赋权)编码背景知识;尽管(或者是因为)其简单,在实验中表现效果好。

模型

1927 年的 CP(Canonical Polyadic)在链接预测上表现效果通常很差,因为它为每个实体分配两个向量(作

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值