【paper】 SimplE Embedding for Link Prediction in Knowledge Graphs
【简介】 本文是加拿大英属哥伦比亚大学的两位学者发表在 NIPS 2018 上的工作,文章提出了 SimplE(Simple Embedding)。这篇和前面一篇差不多,也是对 1927 年的 CP 进行改进(简化),传统CP为实体分配的两个向量是独立训练的,SimplE利用关系的逆在三元组打分函数中加上了一个对称项,使得每个实体的两个向量依赖学习,并且 SimplE 的复杂度随 embedding 维度呈线性。
SimplE 可以被视为双线性模型,并且是 fully expressive,可以通过参数共享(赋权)编码背景知识;尽管(或者是因为)其简单,在实验中表现效果好。
模型
1927 年的 CP(Canonical Polyadic)在链接预测上表现效果通常很差,因为它为每个实体分配两个向量(作