14种异常检测方法汇总(附代码)!

本文详细介绍了14种常见的异常检测方法,包括基于分布的3sigma、Z-score、boxplot、Grubbs假设检验,基于距离的KNN,基于密度的LOF、COF、SOS,基于聚类的DBSCAN,基于树的Isolation Forest,以及基于降维的PCA和AutoEncoder,还有基于分类的One-Class SVM。每种方法都附带了代码示例和资料来源,是学习异常检测的好材料。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大家好,我是Peter~

今天给大家分享一篇关于异常检测的文章,重点介绍了14种公开网络上一些常见的异常检测方法(附资料来源和代码)。

1

『基于分布的方法』

1. 3sigma

基于正态分布,3sigma准则认为超过3sigma的数据为异常点。

图1: 3sigma

 

def three_sigma(s):
    mu, std = np.mean(s), np.std(s)
    lower, upper = mu-3*std, mu+3*std
    return lower, upper

2. Z-score

Z-score为标准分数,测量数据点和平均值的距离,若A与平均值相差2个标准差,Z-score为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值