Peft库实战(二):Lora微调mt5-xxl【Seq2Seq:翻译、自动摘要、信息抽取】

一、Lora微调mt5-xxl

GPU要求:至少 A100-SXM4-80GB * 2

batch_size:A100-SXM4-80GB * 2情况下最大 16

备注:mt5-xxl全参数微调,batch_size=2时,A100-SXM4-80GB至少需要5张

run_finetune_lora.py

import logging
import os
import sys
import numpy as np
from datasets import Dataset
from peft import PeftModel
from peft import LoraModel, LoraConfig, get_peft_model
import random
import torch
import json
import transformers
from transformers import AutoConfig, AutoTokenizer, AutoModelForSeq2SeqLM, DataCollatorForSeq2Seq, HfArgumentParser, Seq2SeqTrainer, Seq2SeqTrainingArguments
from transformers.trainer_utils import get_last_checkpoint, is_main_process
from arguments import ModelArguments, DataTrainingArguments
from utils import get_extract_metrics_f1


os.environ["WANDB_DISABLED"] = "true"
logger = logging.getLogger("__main__&#
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
1.项目代码均经过功能验证ok,确保稳定可靠运行。欢迎下载体验!下载完使用问题请私信沟通。 2.主要针对各个计算机相关专业,包括计算机科学、信息安全、数据科学与大数据技术、人工智能、通信、物联网等领域的在校学生、专业教师、企业员工。 3.项目具有丰富的拓展空间,不仅可作为入门进阶,也可直接作为毕设、课程设计、大作业、初期项目立项演示等用途。 4.当然也鼓励大家基于此进行次开发。在使用过程中,如有问题或建议,请及时沟通。 5.期待你能在项目中找到乐趣和灵感,也欢迎你的分享和反馈! 【资源说明】 基于LoRA对ChatGLM进行微调实验python源码+训练好的模型+项目说明.zip 使用LoRA对ChatGLM进行微调。整体的结构非常简单,构造好相应格式的数据后就可以开始训练。 训练好的实体识别LoRA权重已经位于checkpoint下。 # 依赖 linux操作系统为Ubantu,GPU为A40-48G显存。 ```python mpi4py transformers==4.28.1 peft==0.3.0 icetk deepspeed==0.9.2 accelerate cpm_kernels sentencepiece==0.1.99 peft=0.3.0 torch=2.0.0 ``` # 说明 ## 目录结构 ```python --checkpoint:保存模型 ----msra:数据集名称 --------train_deepspeed ------------adapter_model ----------------adapter_config.json ----------------adapter_model.bin ----------------train_args.json --------train_trainer ------------adapter_model ----------------adapter_config.json ----------------adapter_model.bin ----------------train_args.json --model_hub:预训练模型 ----chatglm-6b:预训练模型位置 --data:数据 ----msra:数据集名称 --------instruct_data:指令数据 ------------dev.txt ------------train.txt --------ori_data:原始数据 --chat_ner.py:闲聊 --train_deepspeed.py:使用原生deepspeed训练 --train_trainer.py: 使用transformers的Trainer进行训练 --test.py:测试训练好的模型 --predict.py:预测 --test_chatglm_6b.py:测试原始的chatglm-6b --process.py:处理数据为instruct_data --dataset.py:加载数据为相应的格式 --deepspeed.json:deepspeed配置文件,用于trasnformers的Trainer --config_utils.py:用于用字典定义配置,并接收命令行参数 ``` chatglm-6b下面数据是这样,除权重外已经放在model_hub/chatglm-6b下: 数据格式 这里我们以命名实体识别任务为例,数据在data/msra下,其中ori_data为原始数据,instruct_data为处理后的数据,数据格式为一条一个样本,具体是: ```python {"instruct": "你现在是一个实体识别模型,你需要提取文本里面的人名、地名、机构名,如果存在结果,返回'实体_实体类型',不同实体间用\n分隔。如果没有结果,回答'没有'。", "query": "文本:因有关日寇在京掠夺文物详情,藏界较为重视,也是我们收藏北京史料中的要件之一。", "answer": "日_地名\n京_地名\n北京_地名"} ``` 可以按照自己的任务自行构建。
实战操作中,PEFT可以用来微调BERT模型,以进行文本情感分类任务。首先,我们需要准备一个包含大量文本和标签的数据集,用于训练和验证BERT模型。然后,我们需要利用PEFT中提供的工具和接口,将数据集转换成BERT模型可接受的格式,并进行数据预处理,如分词和填充等操作。 接着,我们可以利用PEFT中提供的预训练模型,加载BERT模型的参数和网络结构,并在数据集上进行微调微调的过程中,我们可以通过调整学习率、批大小和训练轮数等超参数,来优化模型的性能。在每个训练轮数结束后,我们可以利用PEFT中的评估工具对模型进行评估,以了解模型在验证集上的性能表现。 最后,当模型在验证集上的性能达到满意的水平后,我们可以使用PEFT提供的保存模型工具,将微调后的BERT模型保存下来,以备在实际应用中使用。通过PEFT实战操作,我们可以有效地利用BERT模型进行文本情感分类任务,提高模型的准确性和泛化能力,从而更好地满足实际应用的需求。 PEFT实战操作不仅帮助我们更好地理解和使用BERT模型,也为我们提供了一套完整的工具和流程,使得模型训练和应用变得更加简单和高效。 PEFT实战(一): lora微调BERT(文本情感分类) 的操作流程清晰,易于上手,为我们在文本情感分类任务中的应用提供了有力的支持。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值