https://zhuanlan.zhihu.com/p/651380539
https://github.com/ninehills/blog/issues/97
1. 检索增强生成 RAG
在问答和对话的场景下,通常可以通过检索和生成两种方式得到一个回复。检索式回复是在外部知识库中检索出满意的回复,较为可靠和可控,但回复缺乏多样性;而生成式回复则依赖于强大的语言模型中储存的内部知识,不可控,解释性差,但能生成更丰富的回复。把检索和生成结合起来,Facebook AI research 联合 UCL 和纽约大学于 2020 年提出:外部知识检索加持下的生成模型,Retrieval-Augmented Generation (RAG) 检索增强生成。
- 检索:这是指系统搜索庞大的数据库或存储库以查找相关信息的过程。
- 生成:检索后,系统生成类似人类的文本,整合获取的数据。
检索增强方法来克服大型