大模型+检索增强(RAG、Atlas 和 REPLUG)

8 篇文章 21 订阅 ¥9.90 ¥99.00
本文介绍了检索增强生成模型RAG、Atlas和REPLUG,它们结合了检索与生成技术,解决大模型的知识局限性。RAG由检索器和生成器两部分组成,通过检索外部知识来增强生成答案的准确性。Atlas在检索增强语言模型上进行Few-shot学习,通过检索器和语言模型的联合训练。REPLUG则是一个黑盒式检索增强模型,语言模型参数冻结,检索组件可微调。这些技术提高了模型的可解释性、可控性和可更新性。
摘要由CSDN通过智能技术生成

https://zhuanlan.zhihu.com/p/651380539

https://github.com/ninehills/blog/issues/97

1. 检索增强生成 RAG

在问答和对话的场景下,通常可以通过检索和生成两种方式得到一个回复。检索式回复是在外部知识库中检索出满意的回复,较为可靠和可控,但回复缺乏多样性;而生成式回复则依赖于强大的语言模型中储存的内部知识,不可控,解释性差,但能生成更丰富的回复。把检索和生成结合起来,Facebook AI research 联合 UCL 和纽约大学于 2020 年提出:外部知识检索加持下的生成模型,Retrieval-Augmented Generation (RAG) 检索增强生成

  • 检索:这是指系统搜索庞大的数据库或存储库以查找相关信息的过程。
  • 生成:检索后,系统生成类似人类的文本,整合获取的数据。

检索增强方法来克服大型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值