这篇文章主要是对DeepSpeed Chat的功能做了一些了解,然后翻译了几个主要的教程了解了一些使用细节。最后在手动复现opt-13b做actor模型,opt-350m做reward模型进行的chatbot全流程训练时,踩了一些坑也分享出来了。最后使用训练后的模型做serving展示了一下对话效果并简要分析了一下chatbot的推理代码。后续,我会尝试深入到DeepSpeed Chat的三个训练阶段分别进行源码解读和理解,也许也会尝试一下其它的模型或者修改数据集来获得更好的chatbot效果。
0x0. 前言
之前翻译了几篇DeepSpeed的教程,也使用Megatron-DeepSpeed走通了GPT2模型的训练和推理流程。这篇文章想记录一下复现DeepSpeed前段时间给出的DeepSpeed-Chat例子,训练一个经过监督指令微调和RLHF之后的对话模型。关于DeepSpeed的发布博客见:https://github.com/microsoft/D