数学分析(一)-实数集与函数4-具有某些特性的函数1:有界函数【设f为定义在D上的函数,若存在数M,使得对每一个x∈D,有f(x)≤M,则称f为D上的有上界函数,M称为f在D上的一个上界】

本文介绍了数学分析中的有界函数概念,包括定义1和定义2。有界函数是指存在一个数M,使得函数的所有值不超过M。正弦函数和余弦函数是R上的有界函数例子。此外,文章还讨论了无上界和无下界的函数定义,并通过例题证明了函数在特定区间上的无上界性质。最后,阐述了有界函数的上确界和下确界的概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在本节中, 我们将介绍以后常用到的几类具有某些特性的函数.

一、有界函数

定义 1

f f f 为定义在 D D D 上的函数. 若存在数 M ( L ) M(L) M(L), 使得对每一个 x ∈ D x \in D xD, 有

f ( x ) ⩽ M ( f ( x ) ⩾ L ) , f(x) \leqslant M(f(x) \geqslant L), f(x)M(f(x)L),

则称 f f f D D D 上的有上 (下) 界函数, M ( L ) M(L) M(L) 称为 f f f D D D 上的一个上(下) 界.

根据定义, f f f D D D 上有上 (下) 界, 意味着值域 f ( D ) f(D) f(D) 是一个有上 (下)界的数集. 又若 M ( L ) M(L) M(L) f f f D D D 上的上 (下) 界, 则任何大于 (小于) M ( L ) M(L) M(L) 的数也是 f f f D D D 上的上 (下) 界.

定义 2

f f f 为定义在 D D D 上的函数. 若存在正数 M M M, 使得对每一个 x ∈ D x \in D xD, 有

∣ f ( x ) ∣ ⩽ M , |f(x)| \leqslant M, f(x)M,

则称 f f f D D D 上的 有界函数.

根据定义, f f f D D D 上有界, 意味着值域 f ( D ) f(D) f(D) 是一个有界集. 又按定义, 不难验证: f f f D D D 上有界的充要条件是 f f f D D D 上既有上界又有下界. (1) 式的几何意义是: 若 f f f D D D上的有界函数,则 f f f 的图像完全落在直线 y = M y=M y=M y = − M y=-M

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值