在本节中, 我们将介绍以后常用到的几类具有某些特性的函数.
一、有界函数
定义 1
设 f f f 为定义在 D D D 上的函数. 若存在数 M ( L ) M(L) M(L), 使得对每一个 x ∈ D x \in D x∈D, 有
f ( x ) ⩽ M ( f ( x ) ⩾ L ) , f(x) \leqslant M(f(x) \geqslant L), f(x)⩽M(f(x)⩾L),
则称 f f f 为 D D D 上的有上 (下) 界函数, M ( L ) M(L) M(L) 称为 f f f 在 D D D 上的一个上(下) 界.
根据定义, f f f 在 D D D 上有上 (下) 界, 意味着值域 f ( D ) f(D) f(D) 是一个有上 (下)界的数集. 又若 M ( L ) M(L) M(L) 为 f f f 在 D D D 上的上 (下) 界, 则任何大于 (小于) M ( L ) M(L) M(L) 的数也是 f f f 在 D D D 上的上 (下) 界.
定义 2
设 f f f 为定义在 D D D 上的函数. 若存在正数 M M M, 使得对每一个 x ∈ D x \in D x∈D, 有
∣ f ( x ) ∣ ⩽ M , |f(x)| \leqslant M, ∣f(x)∣⩽M,
则称 f f f 为 D D D 上的 有界函数.
根据定义, f f f 在 D D D 上有界, 意味着值域 f ( D ) f(D) f(D) 是一个有界集. 又按定义, 不难验证: f f f在 D D D 上有界的充要条件是 f f f 在 D D D 上既有上界又有下界. (1) 式的几何意义是: 若 f f f 为 D D D上的有界函数,则 f f f 的图像完全落在直线 y = M y=M y=M 与 y = − M y=-M