数学分析(九)-定积分3-4-可积性理论1-1:上和与下和的性质1【对同一个分割T,相对于任何点集{ξᵢ}而言,上和是所有积分和的上确界,下和是所有积分和的下确界】

本文探讨了数学分析中的上和与下和概念,阐述了它们作为积分和的上确界与下确界性质,并通过不等式(1)展示如何导出可积性的充要条件。性质1指出,针对同一分割T,上和是所有积分和的最大上界,下和是最小下界。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在第3节第二段里, 我们已经引人了上和 S ( T ) S(T) S(T) 和下和 s ( T ) s(T) s(T) 的概念.

即对于分割 T T T : a = x 0 < x 1 < ⋯ < x n = b a=x_{0}<x_{1}<\cdots<x_{n}=b a=x0<x1<<xn=b, 以及 Δ = [ x i − 1 , x i ] , Δ x i = x i − x i − 1 \Delta=\left[x_{i-1}, x_{i}\right], \Delta x_{i}=x_{i}-x_{i-1} Δ=[xi1,xi],Δxi=xixi1, 有

S ( T ) = ∑ i = 1 n M i Δ x i , s ( T ) = ∑ i = 1 n m i Δ x i , S(T)=\sum_{i=1}^{n} M_{i} \Delta x_{i}, \quad s(T)=\sum_{i=1}^{n} m_{i} \Delta x_{i}, S(T)=i=1nMiΔxi,s(T)=i=1n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值