例 3
讨论 f ( x , y ) = x y x 2 + y 2 f(x, y)=\cfrac{x y}{x^{2}+y^{2}} f(x,y)=x2+y2xy 当 ( x , y ) → ( 0 , 0 ) (x, y) \rightarrow(0,0) (x,y)→(0,0)时是否存在极限.
解
当动点 ( x , y ) (x, y) (x,y) 沿着直线 y = m x y=m x y=mx 而趋于定点 ( 0 , 0 ) (0,0) (0,0) 时, 由于此时 f ( x , y ) = f(x, y)= f(x,y)= f ( x , m x ) = m 1 + m 2 f(x, m x)=\cfrac{m}{1+m^{2}} f(x,mx)=1+m2m, 因而有
lim ( x , y ) → ( 0 , 0 ) y = m x f ( x , y ) = lim x → 0 f ( x , m x ) = m 1 + m 2 . \lim \limits_{\substack{(x, y) \rightarrow(0,0) \\ y=m x}} f(x, y)=\lim \limits_{x \rightarrow 0} f(x, m x)=\cfrac{m}{1+m^{2}} . (x,y)→(0,0)y=mxlimf(x,y)=x→0limf(x,mx)=1+m2m.
这一结果说明动点沿不同斜率 m m m 的直线趋于原点时, 对应的极限值也不同,因此所讨论的极限不存在.
在多元微积分中所讨论的函数中, 最重要的一类就是连续函数, 这与一元微积分是一样的.
二元函数连续性的定义比一元函数更一般化,但它们的局部性质与在有界闭域上的整体性质则完全相同.
定义 1
设 f f f 为定义在点集 D ⊂ R 2 D \subset \mathbf{R}^{2} D⊂R2 上的二元函数,