数学分析(十六)-多元函数的极限与连续3-二元函数的连续性1-连续性概念1:对于任给的正数ε,总存在相应的正数δ,只要P∈U(P₀;δ)∩D,就有|f(P)-f(P₀)|<ε,称f关于集合D在P₀连续

本文探讨了二元函数的连续性,通过例3展示了当动点沿不同直线趋于原点时,函数极限可能不存在。定义了二元函数在某点连续的条件,并指出在点P0是聚点时,连续性的等价条件。此外,还分析了函数f(x,y)=x^2+y^2/xy在不同情况下的连续性。" 135162056,1351607,QNX Screen API:窗口截图实战指南,"['QNX', 'screen', 'Screen API']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

例 3
讨论 f ( x , y ) = x y x 2 + y 2 f(x, y)=\cfrac{x y}{x^{2}+y^{2}} f(x,y)=x2+y2xy ( x , y ) → ( 0 , 0 ) (x, y) \rightarrow(0,0) (x,y)(0,0)时是否存在极限.


当动点 ( x , y ) (x, y) (x,y) 沿着直线 y = m x y=m x y=mx 而趋于定点 ( 0 , 0 ) (0,0) (0,0) 时, 由于此时 f ( x , y ) = f(x, y)= f(x,y)= f ( x , m x ) = m 1 + m 2 f(x, m x)=\cfrac{m}{1+m^{2}} f(x,mx)=1+m2m, 因而有

lim ⁡ ( x , y ) → ( 0 , 0 ) y = m x f ( x , y ) = lim ⁡ x → 0 f ( x , m x ) = m 1 + m 2 . \lim \limits_{\substack{(x, y) \rightarrow(0,0) \\ y=m x}} f(x, y)=\lim \limits_{x \rightarrow 0} f(x, m x)=\cfrac{m}{1+m^{2}} . (x,y)(0,0)y=mxlimf(x,y)=x0limf(x,mx)=1+m2m.

这一结果说明动点沿不同斜率 m m m 的直线趋于原点时, 对应的极限值也不同,因此所讨论的极限不存在.



在多元微积分中所讨论的函数中, 最重要的一类就是连续函数, 这与一元微积分是一样的.

二元函数连续性的定义比一元函数更一般化,但它们的局部性质与在有界闭域上的整体性质则完全相同.

定义 1

f f f 为定义在点集 D ⊂ R 2 D \subset \mathbf{R}^{2} DR2 上的二元函数,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值