数学分析(二十一)-重积分4-二重积分的变量变换1:二重积分的变量变换公式

本文介绍了将一重积分的变量变换公式推广到二重积分的情况,通过引理和定理21.13阐述了如何在二维平面上进行坐标变换,并给出了计算闭区域面积的公式。此外,还通过两个例子详细展示了如何使用变量变换计算特定区域的二重积分,包括梯形和抛物线围成的区域面积。
摘要由CSDN通过智能技术生成

在定积分的计算中,我们得到了如下结论: 设 f ( x ) f(x) f(x) 在区间 [ a , b ] [a, b] [a,b] 上连续, x = φ ( t ) x=\varphi(t) x=φ(t) t t t α \alpha α 变到 β \beta β 时,严格单调地从 a a a 变到 b b b, 且 φ ( t ) \varphi(t) φ(t) 连续可微, 则

∫ a b f ( x ) d x = ∫ α β f ( φ ( t ) ) φ ′ ( t ) d t . ( 1 ) \int_{a}^{b} f(x) \mathrm{d} x=\int_{\alpha}^{\beta} f(\varphi(t)) \varphi^{\prime}(t) \mathrm{d} t . \quad\quad(1) abf(x)dx=αβf(φ(t))φ(t)dt.(1)

α < β ( \alpha<\beta\left(\right. α<β( φ ′ ( t ) > 0 ) \left.\varphi^{\prime}(t)>0\right) φ(t)>0)时, 记 X = [ a , b ] , Y = [ α , β ] X=[a, b], Y=[\alpha, \beta] X=[a,b],Y=[α,β], 则 X = φ ( Y ) , Y = φ − 1 ( X ) X=\varphi(Y), Y=\varphi^{-1}(X) X=φ(Y),Y=φ1(X). 利用这些记号,公式(1) 又可写成

∫ X f ( x ) d x = ∫ φ − 1 ( x ) f ( φ ( t ) ) φ ′ ( t ) d t . ( 2 ) \int_{X} f(x) \mathrm{d} x=\int_{\varphi^{-1}(x)} f(\varphi(t)) \varphi^{\prime}(t) \mathrm{d} t . \quad\quad(2) Xf(x)dx=φ1(x)f(φ(t))φ(t)dt.(2)

α > β ( \alpha>\beta\left(\right. α>β( φ ′ ( t ) < 0 ) \left.\varphi^{\prime}(t)<0\right) φ(t)<0)时, (1) 式可写成

∫ x f ( x ) d x = − ∫ φ − 1 ( x ) f ( φ ( t ) ) φ ′ ( t ) d t . ( 3 ) \int_{x} f(x) \mathrm{d} x=-\int_{\varphi^{-1}(x)} f(\varphi(t)) \varphi^{\prime}(t) \mathrm{d} t . \quad\quad(3) xf(x)dx=φ1(x)f(φ(t))φ(t)dt.(3)

故当 φ ( t ) \varphi(t) φ(t) 为严格单调且连续可微时, (2) 式和 (3)式可统一写成如下的形式:

∫ x f ( x ) d x = ∫ φ − 1 ( x ) f ( φ ( t ) ) ∣ φ ′ ( t ) ∣ d t . ( 4 ) \int_{x} f(x) \mathrm{d} x=\int_{\varphi^{-1}(x)} f(\varphi(t))\left|\varphi^{\prime}(t)\right| \mathrm{d} t . \quad\quad(4) xf(x)dx=φ1(x)f(φ(t))φ(t)dt.(4)

下面我们把公式 (4) 推广到二重积分的场合. 为此,先给出下面的引理.

引理

设变换 T : x = x ( u , v ) , y = y ( u , v ) T: x=x(u, v), y=y(u, v) T:x=x(u,v),y=y(u,v) u v u v uv平面上由按段光滑封闭曲线所围的闭区域 Δ \Delta Δ 一对一地映成 x y x y xy平面上的闭区域 D D D, 函数 x ( u , v ) , y ( u , v ) x(u, v), y(u, v) x(u,v),y(u,v) Δ \Delta Δ内分别具有一阶连续偏导数且它们的函数行列式

J ( u , v ) = ∂ ( x , y ) ∂ ( u , v ) ≠ 0 , ( u , v ) ∈ Δ , J(u, v)=\cfrac{\partial(x, y)}{\partial(u, v)} \neq 0, \quad(u, v) \in \Delta, J(u,v)=(u,v)(x,y)=0,(u,v)Δ,

则区域 D D D 的面积

μ ( D ) = ∬ Δ ∣ J ( u , v ) ∣ d u   d v . ( 5 ) \mu(D)=\iint_{\Delta}|J(u, v)| \mathrm{d} u \mathrm{~d} v . \quad\quad(5) μ(D)=ΔJ(u,v)du dv.(5)


下面给出当 y ( u , v ) y(u, v) y(u,v) Δ \Delta Δ 内具有二阶连续偏导数时的证明. 对 y ( u , v ) y(u, v) y(u,v) 具有一阶连续偏导数条件下的证明在本章 § 9 § 9 §9 中给出.

由于 T T T 是一对一变换, 且 J ( u , v ) ≠ 0 J(u, v) \neq 0 J(u,v)=0, 因而 T T T Δ \Delta Δ的内点变为 D D D 的内点, 所以 Δ \Delta Δ 的按段光滑边界曲线 L Δ L_{\Delta} LΔ 变换到 D D D 时,其边界曲线 L D L_{D} LD 也是按段光滑的.

设曲线 L Δ L_{\Delta} LΔ 的参数方程为

u = u ( t ) , v = v ( t ) ( α ⩽ t ⩽ β ) . u=u(t), \quad v=v(t) \quad(\alpha \leqslant t \leqslant \beta) . u=u(t),v=v(t)(αtβ).

由于 L Δ L_{\Delta} LΔ 按段光滑,所以 u ′ ( t ) , v ′ ( t ) u^{\prime}(t), v^{\prime}(t) u(t),v(t) [ α , β ] [\alpha, \beta] [α,β] 上至多除去有限个第一类间断点外,在其他的点上都连续.
因为 L D = T ( L Δ ) L_{D}=T\left(L_{\Delta}\right) LD=T(LΔ), 所以 L D L_{D} LD 的参数方程为

x = x ( t ) =

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值