数学分析(六)-微分中值定理及其应用1-1-罗尔定理1:罗尔定理【若函数f满足:①f在[a,b]连续;②f在(a,b)可导;③f(a)=f(b),则在(a,b)上至少存在一点ξ,使得f´(ξ)=0】

本文介绍了微分中值定理的重要组成部分——罗尔定理,阐述了其条件和证明过程,并通过一个例子展示了如何应用罗尔定理证明函数根的性质。内容涵盖罗尔定理的三个必要条件,以及在函数单调性分析中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这一章里, 我们要讨论怎样由导数 f ′ f^{\prime} f 的已知性质来推断函数 f f f所应具有的性质.

微分中值定理正是进行这一讨论的有效工具。包括:

  • 罗尔定理
  • 拉格朗日定理
  • 柯西定理
  • 泰勒定理

本节首先介绍拉格朗日定理以及它的预备定理一一罗尔定理,并用此讨论函数的单调性.


定理 6.1 (罗尔 (Rolle) 中值定理)

若函数 f f f 满足如下条件:

  • (i) f f f 在闭区间 [ a , b ] [a, b] [a,b] 上连续;
  • (ii) f f f 在开区间 ( a , b ) (a, b) (a,b) 上可导;
  • (iii) f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b),

则在 ( a , b ) (a, b) (a,b) 上至少存在一点 ξ \xi ξ, 使得

f ′ ( ξ ) = 0 ( 1 )

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值