在这一章里, 我们要讨论怎样由导数 f ′ f^{\prime} f′ 的已知性质来推断函数 f f f所应具有的性质.
微分中值定理正是进行这一讨论的有效工具。包括:
- 罗尔定理
- 拉格朗日定理
- 柯西定理
- 泰勒定理
本节首先介绍拉格朗日定理以及它的预备定理一一罗尔定理,并用此讨论函数的单调性.
定理 6.1 (罗尔 (Rolle) 中值定理)
若函数 f f f 满足如下条件:
- (i) f f f 在闭区间 [ a , b ] [a, b] [a,b] 上连续;
- (ii) f f f 在开区间 ( a , b ) (a, b) (a,b) 上可导;
- (iii) f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b),
则在 ( a , b ) (a, b) (a,b) 上至少存在一点 ξ \xi ξ, 使得
f ′ ( ξ ) = 0 ( 1 )