§ 10 多元多项式
在前面我们讨论了一元多项式的基本性质.但是除去一元多项式外, 还有含多个
文字的多项式, 即多元多项式, 如 x 2 − y 2 , x 3 + y 3 + z 3 − 3 x y z x^{2}-y^{2}, x^{3}+y^{3}+z^{3}-3 x y z x2−y2,x3+y3+z3−3xyz
等. 现在就来简单地介绍一下有关多元多项式的一些概念.
设 P P P 是一个数域, x 1 , x 2 , ⋯ , x n x_{1}, x_{2}, \cdots, x_{n} x1,x2,⋯,xn 是 n n n 个文字. 形式为
a x 1 k 1 x 2 L 2 ⋯ x n k n a x_{1}^{k_{1}} x_{2}^{L_{2}} \cdots x_{n}^{k_{n}} ax1k1x2L2⋯xnkn
的式子, 其中 a a a 属于 P , k 1 , k 2 , ⋯ , k n P, k_{1}, k_{2}, \cdots, k_{n} P,k1,k2,⋯,kn 是非负整数,
称为一个单项式.
如果两个单项式中相同文字的基全一样, 那么它们就称为同类项,一些单项式的和
∑ k 1 , k 2 , ⋯ , k n a k 1 k 2 ⋯ k n x 1 k 1 x 2 k 2 ⋯ x n k n \sum_{k_{1}, k_{2}, \cdots, k_{n}} a_{k_{1} k_{2} \cdots k_{n}} x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{n}^{k_{n}} k1,k2,⋯,kn∑ak1k2⋯knx1k1x2k2⋯xnkn
就称为 n n n 元多项式,或者简称多项式.
和一元多项式一样, n n n 元多项式也可以定义相等、相加、相减、相乘.例如,
( 5 x 1 3 x 2 x 3 2 + 4 x 1 2 x 2 2 x 3 ) + ( 2 x 1 2 x 2 2 x 3 − x 1 4 x 2 x 3 ) = 5 x 1 3 x 2 x 3 2 + 6 x 1 2 x 2 2 x 3 − x 1 4 x 2 x 3 , ( 5 x 1 3 x 2 x 3 2 + 4 x 1 2 x 2 2 x 3 ) ( 2 x 1 2 x 2 2 x 3 − x 1 4 x 2 x 3 ) = 10 x 1 5 x 2 3 x 3 3 − 5 x 1 7 x 2 2 x 3 3 + 8 x 1 4 x 2 4 x 3 2 − 4 x 1 6 x 2 3 x 3 2 . \begin{array}{c} \left(5 x_{1}^{3} x_{2} x_{3}^{2}+4 x_{1}^{2} x_{2}^{2} x_{3}\right)+\left(2 x_{1}^{2} x_{2}^{2} x_{3}-x_{1}^{4} x_{2} x_{3}\right)=5 x_{1}^{3} x_{2} x_{3}^{2}+6 x_{1}^{2} x_{2}^{2} x_{3}-x_{1}^{4} x_{2} x_{3}, \\ \left(5 x_{1}^{3} x_{2} x_{3}^{2}+4 x_{1}^{2} x_{2}^{2} x_{3}\right)\left(2 x_{1}^{2} x_{2}^{2} x_{3}-x_{1}^{4} x_{2} x_{3}\right)=10 x_{1}^{5} x_{2}^{3} x_{3}^{3}-5 x_{1}^{7} x_{2}^{2} x_{3}^{3}+8 x_{1}^{4} x_{2}^{4} x_{3}^{2}-4 x_{1}^{6} x_{2}^{3} x_{3}^{2} . \end{array} (5x13x2x32+4x12x22x3)+(2x12x22x3−x14x2x3)=5x13x2x32+6x12x22x3−x14x2x3,(5x13x2x32+4x12x22x3)(2x12x22x3−x14x2x3)=10x15x23x33−5x17x22x33+8x14x24x32−4x16x23x32.
与一元的情况相仿,我们有
定义 10 所有系数在数域 P P P 中的 n n n 元多项式的全体, 称为数域 P P P 上的
n n n 元多项式环, 记为
P [ x 1 , x 2 , ⋯ , x n ] . P\left[x_{1}, x_{2}, \cdots, x_{n}\right] . P[x1,x2,⋯,xn].
k 1 + k 2 + ⋯ + k n k_{1}+k_{2}+\cdots+k_{n} k1+k2+⋯+kn 称为单项式 (1) 的次数.
当一个多项式表成一些不同类的单项式的和之后,
其中系数不为零的单项式的最高次数就称为这个多项式的次数. 例如, 多项式
3 x 1 2 x 2 2 + 2 x 1 x 2 2 x 3 + x 3 3 3 x_{1}^{2} x_{2}^{2}+2 x_{1} x_{2}^{2} x_{3}+x_{3}^{3} 3x12x22+2x1x22x3+x33
的次数为 4 .
虽然多元多项式也有次数, 但是与一元多项式的情况不同,
我们并不能对多元多项式 (2) 中的单项式按次数给出一个自然排列的顺序,
因为不同类的单项式可能有相同的次数.我们看到,一元多项式的降幂排法
(或者升幂排法) 对于许多问题的讨论是方便的. 同样地, 为了便于以后的讨论,
我们对于多元多项式也引人一种排列顺序的方法,这种方法是模仿字典排列的原则得出的,
因而称为字典排列法.
每一类单项式 (1) 都对应一个 n n n 元有序数组
( k 1 , k 2 , ⋯ , k n ) , \left(k_{1}, k_{2}, \cdots, k_{n}\right), (k1,k2,⋯,kn),
其中 k i k_{i} ki 为非负整数. 这个对应是一一对应的.
为了给出单项式之间一个排列顺序的方法, 我们只要对于 n n n 元数组 (3)
定义一个先后顺序就行了.
如果数
k 1 − l 1 , k 2 − l 2 , ⋯ , k n − l n k_{1}-l_{1}, \quad k_{2}-l_{2}, \quad \cdots, \quad k_{n}-l_{n} k1−l1,k2−l2,⋯,kn−ln
中第一个不为零的数是正的, 也就是说, 有 i ⩽ n i \leqslant n i⩽n, 使
k 1 − l 1 = 0 , ⋯ , k i − 1 − l i − 1 = 0 , k i − l i > 0 , k_{1}-l_{1}=0, \cdots, \quad k_{i-1}-l_{i-1}=0, \quad k_{i}-l_{i}>0, k1−l1=0,⋯,ki−1−li