高等代数(二)-行列式02:排列

本文介绍了高等代数中关于排列的定义和性质,包括排列的逆序数、奇偶排列的概念。通过定理和推论证明了经过对换操作,排列的奇偶性会改变,并且所有n阶排列中奇偶排列数量相等,各占n! / 2。此外,展示了如何通过一系列对换将任意排列转换为自然顺序排列12...n。
摘要由CSDN通过智能技术生成

§ 2 § 2 §2 排列
作为定义 n n n 阶行列式的准备,我们先来讨论一下排列的性质.
定义 1 由 1 , 2 , ⋯   , n 1,2, \cdots, n 1,2,,n 组成的一个有序数组称为一个 n n n 阶排列.
例如, 2431 是一个 4 阶排列, 45321 是一个 5 阶排列. 我们知道, n n n
阶排列的总数是
n ⋅ ( n − 1 ) ⋅ ( n − 2 ) ⋅ ⋯ ⋅ 2 ⋅ 1. n \cdot(n-1) \cdot(n-2) \cdot \cdots \cdot 2 \cdot 1 . n(n1)(n2)21.
我们记
1 ⋅ 2 ⋅ ⋯ ⋅ ( n − 1 ) ⋅ n = n ! , 1 \cdot 2 \cdot \cdots \cdot(n-1) \cdot n=n !, 12(n1)n=n!,
读为 " n n n 阶乘". 例如:
4 ! = 4 × 3 × 2 × 1 = 24 , 5 ! = 120. n 4 !=4 \times 3 \times 2 \times 1=24,5 !=120 . n 4!=4×3×2×1=24,5!=120.n ! 随着 n n n
的增大迅速地增大. 例如, 10 ! = 3628800 =3628800 =3628800.
显然 12 ⋯ n 12 \cdots n 12n 也是一个 n n n 阶排列.
这个排列是按照递增的顺序排起来的,
称为自然顺序,其他的排列都或多或少地破坏自然顺序.
定义 2 在一个排列中, 如果一对数的前后位置与大小顺序相反,
即前面的数大于后面的数, 那么它们就称为一个逆序,
一个排列中逆序的总数就称为这个排列的逆序数.
例如 2431 中, 21 , 43 , 41 , 31 21,43,41,31 21,43,41,31 是逆序, 2431 的逆序数就是 4 . 而 45321
的逆序数是 9 .
排列 j 1 j 2 ⋯ j n j_{1} j_{2} \cdots j_{n} j1j2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值