高等代数(二)-行列式04:n 阶行列式的性质

本文探讨了n阶行列式的性质,包括行的公因子可提出、行的和与行列式的关系以及相同行的行列式为零。通过这些性质简化了行列式的计算,并通过实例展示了如何应用这些性质来解决问题。
摘要由CSDN通过智能技术生成

§ 4 n § 4 n §4n 阶行列式的性质
行列式的计算是一个重要的问题,也是一个很麻烦的问题. n n n 阶行列式一共有
n n n !项, 计算它就需做 n ! ( n − 1 ) n !(n-1) n!(n1) 个乘法. 当 n n n 较大时, n n n !
是一个相当大的数字. 直接从定义来计算行列式几乎是不可能的事.
因此我们有必要进一步讨论行列式的性质. 利用这些性质可以化简行列式的计算.
在行列式的定义中,虽然每一项是 n n n 个元素的乘积, 但是由于这 n n n
个元素是取自不同的行与列, 所以对于某一确定的行中 n n n 个元素 (譬如
a i 1 , a i 2 , ⋯   , a i n a_{i 1}, a_{i 2}, \cdots, a_{i n} ai1,ai2,,ain ) 来说,
每一项都含有其中的一个且只含有其中的一个元素. 因之, n n n 阶行列式的 n n n !
项可以分成 n n n 组,第一组的项都含有 a i 1 a_{i 1} ai1, 第二组的项都含有
a i 2 a_{i 2} ai2, 等等.再分别把 i i i 行的元素提出来, 就有
∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ = a i 1 A i 1 + a i 2 A i 2 + ⋯ + a i n A i n , \left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n} \end{array}\right|=a_{i 1} A_{i 1}+a_{i 2} A_{i 2}+\cdots+a_{i n} A_{i n}, a11a21an1a12a22an2a1na2nann =ai1Ai1+ai2Ai2++ainAin,
其中 A i j A_{i j} Aij 代表那些含有 a i j a_{i j} aij 的项在提出公因子 a i j a_{i j} aij
之后的代数和. 至于 A i j A_{i j} Aij 究竟是哪些项的和, 我们暂且不管, 到 86
再来讨论. 从以上讨论可以知道, A i j A_{i j} Aij 中不再含有第 i i i 行的元素,也就是
A i 1 , A i 2 , ⋯   , A i n A_{i 1}, A_{i 2}, \cdots, A_{i n} Ai1,Ai2,,Ain 全与行列式中第 i i i
行的元素无关.由此即得
性质 2
∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ k a i 1 k a i 2 ⋯ k a i n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ = k ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ a i 1 a i 2 ⋯ a i n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ . \left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ \vdots & \vdots & & \vdots \\ k a_{i 1} & k a_{i 2} & \cdots & k a_{i n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n} \end{array}\right|=k\left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ \vdots & \vdots & & \vdots \\ a_{i 1} & a_{i 2} & \cdots & a_{i n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n} \end{array}\right| . a11kai1an1a12kai2an2a1nkainann =k a11ai1an1a12ai2an2a1nainann .
这就是说,一行的公因子可以提出去,
或者说以一数乘行列式的一行就相当于用这个数乘此行列式.
事实上, 由 (1) 得
∣ a 11 a 12 ⋯ ⋮ ⋮ ⋮ k a i 1 k a i 2 ⋯ k a i n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ = k a i 1 A i 1 + k a i 2 A i 2 + ⋯ + k a i n A i n \left|\begin{array}{cccc} & a_{11} & a_{12} & \cdots \\ \vdots & \vdots & & \vdots \\ k a_{i 1} & k a_{i 2} & \cdots & k a_{i n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n} \end{array}\right|=k a_{i 1} A_{i 1}+k a_{i 2} A_{i 2}+\cdots+k a_{i n} A_{i n} kai1an1a11kai2an2a12kainann =kai1Ai1+kai2Ai2++kainAin
= k ( a i 1 A i 1 + a i 2 A i 2 + ⋯ + a i n A i n ) = k ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ a i 1 a i 2 ⋯ a i n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ ⋅ I =k\left(a_{i 1} A_{i 1}+a_{i 2} A_{i 2}+\cdots+a_{i n} A_{i n}\right)=k\left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ \vdots & \vdots & & \vdots \\ a_{i 1} & a_{i 2} & \cdots & a_{i n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n} \end{array}\right| \cdot \mathbf{I} =k(ai1Ai1+ai2Ai2++ainAin)=k a11ai1an1a12ai2an2a1nainann I
k = 0 k=0 k=0 就有, 如果行列式中一行为零, 那么行列式为零.
性质 3
∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ b 1 + c 1 b 2 + c 2 ⋯ b n + c n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ = ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ b 1 b 2 ⋯ b n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ + ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ c 1 c 2 ⋯ c n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ . \left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ \vdots & \vdots & & \vdots \\ b_{1}+c_{1} & b_{2}+c_{2} & \cdots & b_{n}+c_{n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n} \end{array}\right|=\left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ \vdots & \vdots & & \vdots \\ b_{1} & b_{2} & \cdots & b_{n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n} \end{array}\right|+\left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ \vdots & \vdots & & \vdots \\ c_{1} & c_{2} & \cdots & c_{n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n} \end{array}\right| . a11b1+c1an1a12b2

  • 23
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值