§ 1 § 1 §1 集合 - 映射
作为本章的预备知识, 在这一节我们先来介绍一些基本概念,
主要是集合和映射的概念. 熟悉这些基本概念不但对于代数的学习是必要的,
对于一般数学的学习也是不可少的.
集合是数学中最基本的概念之一.简单地说,
所谓集合就是指作为整体看的一堆东西.例如,一个班就是由一些同学组成的集合;
一个线性方程组解的全体组成一个集合, 即所谓解集合. 又如在几何中,
我们通常是把点看作基本的对象, 这样, 一条直线就是一个由点组成的集合;
一条曲线、一个平面也都是由一些点组成的集合.组成集合的东西称为这个集合的元素.我们用
a ∈ M a \in M a∈M
表示 a a a 是集合 M M M 的元素,读为 a a a 属于 M M M.用
a ∈ ˉ M a \bar{\in} M a∈ˉM
表示 a a a 不是集合 M M M 的元素,读为 a a a 不属于 M M M.
所谓给出一个集合就是规定这个集合是由哪些元素组成的.
因此给出一个集合的方式不外两种,一种是列举出它全部的元素,一种是给出这个集合的元素所具有的特征性质.
例如, M M M 是由数 1 , 2 , 3 1,2,3 1,2,3 组成的集合, 记为
M = { 1 , 2 , 3 } , M=\{1,2,3\}, M={
1,2,3},
这就是列举它全部的元素; 适合方程
x 2 a 2 + y 2 b 2 = 1 \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 a2x2+b2y2=1 的全部点的集合,
或某一个线性方程组的解集合, 这就是给出集合元素的特征性质.
由无穷多个元素组成的集合是不可能用列举法给出的.
关于用性质定义的集合, 我们引进一种记法. 设 M M M
是具有某些性质的全部元素所组成的集合, 就可写成
M = { a ∣ a 具有的性质 } . M=\{a \mid a \text { 具有的性质 }\} . M={
a∣a 具有的性质 }.
例如, 适合方程 x 2 a 2 + y 2 b 2 = 1 \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 a2x2+b2y2=1
的全部点的集合 M M M 可写成
M = { ( x , y ) ∣ x 2 a 2 + y 2 b 2 = 1 } . M=\left\{(x, y) \left\lvert\, \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\right.\right\} . M={
(x,y)
a2x2+b2y2=1}.
又例如, 两个多项式 f ( x ) , g ( x ) f(x), g(x) f(x),g(x) 的公因式的集合可写成
M = { d ( x ) ∣ d ( x ) ∣ f ( x ) , d ( x ) ∣ g ( x ) } . M=\{d(x)|d(x)| f(x), d(x) \mid g(x)\} . M={
d(x)∣d(x)∣f(x),d(x)∣g(x)}.
不包含任何元素的集合称为空集合.例如,一个无解的线性方程组的解集合就是空集合.把空集合也看作是集合,这一点与通常的习惯不很一致,但是在数学上有好处,同时也不是完全没有道理的,正如我们把
0 也看作是数一样.
如果两个集合 M M M 与 N N N 含有完全相同的元素,即 a ∈ M a \in M a∈M 当且仅当
a ∈ N a \in N a∈N,那么它们就称为相等, 记为
M = N . M=N . M=N.
如果集合 M M M 的元素全是集合 N N N 的元素,即由 a ∈ M a \in M a∈M 可以推出
a ∈ N a \in N a∈N,那么 M M M 就称为 N N N 的子集合, 记为
M ⊂ N 或 N ⊃ M . M \subset N \text { 或 } N \supset M . M⊂N 或 N⊃M.
例如,全体偶数组成的集合是全体整数组成的集合的子集合.按定义,每个集合都是它自身的子集合.我们规定,空集合是任一集合的子集合.
两个集合 M M M 和 N N